Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

On the supersingular locus in Hilbert-Blumenthal $4$-folds


Author: Chia-Fu Yu
Journal: J. Algebraic Geom. 12 (2003), 653-698
DOI: https://doi.org/10.1090/S1056-3911-03-00352-7
Published electronically: July 9, 2003
MathSciNet review: 1993760
Full-text PDF

Abstract | References | Additional Information

Abstract: We study the supersingular locus of Hilbert-Blumenthal four-folds modulo $p$ when $p$ is inert in the totally real field. The dimension, local moduli spaces, number of the irreducible components, and a description of intersections of these components are given. We also show that each irreducible component is a smooth algebraic stack which is a quotient of a ruled surface over ${\mathbf P}^1$ by a finite group.


References [Enhancements On Off] (What's this?)

  • 1. A. Beauville, Complex algebraic surfaces. Translated from the French by R. Barlow, N.I. Shepherd-Barron and M. Reid. London Mathematical Society Lecture Note Series 68, Cambridge University Press, Cambridge-New York, 1983.
  • 2. L. Breen, Rapport sur la théorie de Dieudonné. Journées de Géométrie Algébrique de Rennes (1978), Vol. I, pp. 39-66, Astérisque, no. 63. Soc. Math. France, Paris, 1979.
  • 3. C.-L. Chai, Newton polygons as lattice points. Amer. J. Math. 122 (2000), 967-990.
  • 4. C.-L. Chai and P. Norman, Bad reduction of the Siegel moduli scheme of genus two with $\Gamma_0(p)$-level structure. Amer. J. Math. 112 (1990), 1003-1071.
  • 5. C.-L. Chai and P. Norman, Singularities of the $\Gamma_0(p)$-level structure. J. Algebraic Geom. 1 (1992), 251-178.
  • 6. A.J. de Jong and F. Oort, Purity of the stratification by Newton polygons. J. Amer. Math. Soc. 13 (2000), 209-241.
  • 7. P. Deligne and G. Pappas, Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant. Compositio Math. 90 (1994), 59-79.
  • 8. T. Ekedahl, On supersingular curves and supersingular abelian varieties. Math. Scand. 60 (1987), 151-178.
  • 9. T. Ekedahl and F. Oort, Connected subsets of a moduli space of abelian varieties. (to appear).
  • 10. E.Z. Goren and F. Oort, Stratifications of Hilbert modular varieties in positive characteristic. J. Algebraic Geom. 9 (2000), 111-154.
  • 11. A. Grothendieck, Groupes de Barsotti-Tate et Cristaux de Dieudonné. Les Presses de l'Université de Montréal, 1974.
  • 12. T. Ibukiyama, T. Katsura and F. Oort, Supersingular curves of genus two and class numbers. Compositio Math. 57 (1986), 127-152.
  • 13. N. M. Katz, Slope filtration of $F$-crystals. Journées de Géométrie Algébrique de Rennes (1978), Vol. I, pp. 113-163, Astérisque, no. 63. Soc. Math. France, Paris, 1979.
  • 14. N. Koblitz, $p$-adic variant of the zeta-function of families of varieties defined over finite fields. Compositio Math. 31 (1975), 119-218.
  • 15. T. Katsura and F. Oort, Families of supersingular abelian surfaces, Compositio Math. 62 (1987), 107-167.
  • 16. T. Katsura and F. Oort, Supersingular abelian varieties of dimension two or three and class numbers. Adv. St. Pure Math. (Algebraic Geometry, Sendai, 1985, Ed. T. Oda) (1987), 253-281.
  • 17. R. E. Kottwitz, Isocrystal with additional structure. Compositio Math. 56 (1985), 201-220.
  • 18. K.-Z. Li, Classification of supersingular abelian varieties. Math. Ann. 283 (1989), 333-351.
  • 19. K.-Z. Li and F. Oort, Moduli of Supersingular Abelian Varieties. Lecture Notes in Math., vol. 1680, Springer-Verlag, 1998.
  • 20. Yu. Manin, Theory of commutative formal groups over fields of finite characteristic. Russian Math. Surveys 18 (1963), no. 6, 1-80.
  • 21. W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes. Lecture Notes in Math. 264, Springer-Verlag, 1972.
  • 22. D. Mumford, Bi-extensions of formal groups. Algebraic Geometry. 307-322 (Proceedings of Internat. Coll. Bombay, 1968), Oxford Univ. Press, 1969.
  • 23. D. Mumford, Abelian Varieties. Oxford University Press, 1974.
  • 24. P. Norman, An algorithm for computing moduli of abelian varieties. Ann. Math. 101 (1975), 499-509.
  • 25. P. Norman and F. Oort, Moduli of abelian varieties, Ann. Math. 112 (1980), 413-439.
  • 26. A. Ogus, Supersingular K3 crystals. Journées de Géométrie Algébrique de Rennes (1978), Vol. II, pp. 3-86, Astérisque, no. 64. Soc. Math. France, Paris, 1979.
  • 27. T. Oda and F. Oort, Supersingular abelian varieties, Internat. Symp. on Algebraic Geometry, Kyoto (1977), 595-621, Kinokuniya Book Store, Tokyo, 1978.
  • 28. F. Oort, Isogenies of formal groups. Indag. Math. 37 (1975), 391-400.
  • 29. F. Oort, Which abelian surfaces are products of elliptic curves. Math. Ann. 214 (1975), 35-47.
  • 30. F. Oort, Moduli of abelian varieties and Newton polygons. C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 385-289.
  • 31. F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck. Ann. Math. 152 (2000), 183-206.
  • 32. F. Oort, Moduli of abelian varieties, finite group schemes and formal groups. Preprint Univ. Utrecht (1998), 26 pp.
  • 33. G. Pappas, Arithmetic models for Hilbert modular varieties. Compositio Math. 98 (1995), 43-76.
  • 34. M. Rapoport, Compactifications de l'espaces de modules de Hilbert-Blumenthal. Compositio Math. 36 (1978), 255-335.
  • 35. M. Rapoport and M. Richartz, On the classification and specialization of $F$-isocrystals with additional structure. Compositio Math. 103 (1996), 153-181.
  • 36. M. Rapoport and Th. Zink, Period spaces for $p$-divisible groups. Ann. of Math. Studies, vol. 141, Princeton Univ. Press, 1996.
  • 37. H. Stamm, On the reduction of the Hilbert-Blumenthal-moduli scheme with $\Gamma_0(p)$-level structure. Forum Math. 4 (1997), 405-455.
  • 38. C.-F. Yu, Lifting abelian varieties with additional structure. To appear Math. Z. 242 (2002), 427-441.
  • 39. C.-F. Yu, On the supersingular locus of Hilbert-Blumenthal 4-folds. Thesis, Univ. of Penn. 1999, 76 pp.
  • 40. T. Zink, Cartiertheorie kommutativer formaler Gruppen. Teubner-Texte Math., Teubner, Leipzig, 1984.
  • 41. T. Zink, The display of a formal $p$-divisible group. Cohomologies $p$-adiques et applications arithmétiques, pp. 127-248. Astérisque, no. 278, Soc. Math. France, Paris, 2002.
  • 42. T. Zink, Isogenieklassen von Punkten von Shimuramannigfaltigkeiten mit Werten in einem endlichen Körper. Math. Nachr. 112 (1983), 103-124.


Additional Information

Chia-Fu Yu
Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
Email: chiafu@math.columbia.edu

DOI: https://doi.org/10.1090/S1056-3911-03-00352-7
Received by editor(s): December 22, 2000
Received by editor(s) in revised form: January 3, 2002
Published electronically: July 9, 2003

American Mathematical Society