Stringy invariants of normal surfaces

Author:
Willem Veys

Journal:
J. Algebraic Geom. **13** (2004), 115-141

DOI:
https://doi.org/10.1090/S1056-3911-03-00340-0

Published electronically:
September 3, 2003

MathSciNet review:
2008717

Full-text PDF

Abstract | References | Additional Information

Abstract: The stringy Euler number and -function of Batyrev for log terminal singularities in dimension 2 can also be considered for a normal surface singularity with all log discrepancies nonzero in its minimal log resolution. Here we obtain a structure theorem for resolution graphs with respect to log discrepancies, implying that these stringy invariants can be defined in a natural way, even when some log discrepancies are zero, and more precisely for *all* normal surface singularities which are not log canonical. We also show that the stringy -functions of log terminal surface singularities are polynomials (with rational powers) with nonnegative coefficients, yielding well defined (rationally graded) stringy Hodge numbers.

**[A]**V. Alexeev,*Log canonical surface singularities: arithmetical approach*, Seminar, Salt Lake City 1991, In*Flips and abundance for algebraic threefolds*, J. Kollár ed., Astérisque**211**(1992), 47-58.**[ACLM]**E. Artal, P. Cassou-Noguès, I. Luengo and A. Melle,*Monodromy conjecture for some surface singularities*.**[B1]**V. Batyrev,*Stringy Hodge numbers of varieties with Gorenstein canonical singularities*, Proc. Taniguchi Symposium 1997, In Integrable Systems and Algebraic Geometry, Kobe/Kyoto 1997, World Sci. Publ. (1999), 1-32.**[B2]**-,*Non-Archimedian integrals and stringy Euler numbers of log terminal pairs*, J. Europ. Math. Soc.**1**(1999), 5-33.**[BPV]**W. Barth, C. Peters and A. Van de Ven,*Compact complex surfaces*, Springer Verlag, Berlin, 1984.**[D]**A. Dimca,*Singularities and topology of hypersurfaces*, Springer Verlag, New York, 1992.**[DL1]**J. Denef and F. Loeser,*Motivic Igusa zeta functions*, J. Alg. Geom.**7**(1998), 505-537.**[DL2]**-,*Germs of arcs on singular algebraic varieties and motivic integration*, Invent. Math.**135**(1999), 201-232.**[DM]**J. Denef and D. Meuser,*A functional equation of Igusa's local zeta function*, Amer. J. Math.**113**(1991), 1135-1152.**[K]**M. Kontsevich, Lecture at Orsay (December 7, 1995).**[KM]**J. Kollár and S. Mori,*Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics 134, Cambridge Univ. Press, 1998.**[KMM]**Y. Kawamata, K. Matsuda and K. Matsuki,*Introduction to the Minimal Model Program*, Algebraic Geometry, Sendai, T. Oda ed., Kinokuniya, Adv. Stud. Pure Math.**10**(1987), 283-360.**[L]**A. Langer,*Logarithmic orbifold Euler numbers of surfaces with applications*, math.AG/ 0012180 (2000).**[M]**D. Mumford,*The topology of normal singularities of an algebraic surface and a criterion for simplicity*, Publ. Math. I.H.E.S.**9**(1961), 5-22.**[OW]**P. Orlik and Ph. Wagreich,*Equivariant resolution of singularities with**-action*, Proceedings of the Second Conference on Compact Transformation Groups II, Lecture Notes in Mathematics, vol. 299, Springer Verlag, Berlin, 1972, pp. 270-290.**[R]**Y. Ruan,*Stringy geometry and topology of orbifolds*,*Symposium in Honor of C.H. Clemens*(Salt Lake City, 2000), Contemp. Math. 312, Amer. Math. Soc., Providence, RI, 2002, pp. 187-233.**[V1]**W. Veys,*Zeta functions for curves and log canonical models*, Proc. London Math. Soc.**74**(1997), 360-378.**[V2]**-,*The topological zeta function associated to a function on a normal surface germ*, Topology**38**(1999), 439-456.**[V3]**-,*Zeta functions and Kontsevich invariants on singular varieties*, Canadian J. Math.**53**(2001), 834-865.**[Wag]**Ph. Wagreich,*The structure of quasihomogeneous singularities*, Proc. Symp. Pure Math. (Arcata Singularities Conference), vol. 40 (2), A.M.S., 1983, pp. 593-611.**[Wah]**J. Wahl,*A characteristic number for links of surface singularities*, J. Amer. Math. Soc.**3**(1990), 625-637.

Additional Information

**Willem Veys**

Affiliation:
K.U.Leuven, Departement Wiskunde, Celestijnenlaan 200B, B–3001 Leuven, Belgium

Email:
wim.veys@wis.kuleuven.ac.be

DOI:
https://doi.org/10.1090/S1056-3911-03-00340-0

Received by editor(s):
June 8, 2001

Published electronically:
September 3, 2003