Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Reflexive pull-backs and base extension


Authors: Brendan Hassett and Sándor J. Kovács
Journal: J. Algebraic Geom. 13 (2004), 233-247
DOI: https://doi.org/10.1090/S1056-3911-03-00331-X
Published electronically: September 24, 2003
MathSciNet review: 2047697
Full-text PDF

Abstract | References | Additional Information

Abstract: We prove that Viehweg's moduli functor of stable surfaces is locally closed.


References [Enhancements On Off] (What's this?)

  • 1. V. A. Alexeev, Boundedness and $K^2$ for log surfaces, Internat. J. Math. 5 (1994), no. 6, 779-810.
  • 2. W. Bruno and J. Herzog, Cohen-Macaulay Rings, Cambridge Univ. Press, 1993.
  • 3. B. Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, 1750, Springer-Verlag, 2000.
  • 4. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, New York, 1995.
  • 5. A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32, 1960-67.
  • 6. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York-Heidelberg, 1977.
  • 7. B. Hassett, Stable limits of log surfaces and Cohen-Macaulay singularities, J. Algebra 242 (2001) no. 1, 225-235.
  • 8. K. Karu, Minimal models and boundedness of stable varieties, J. Algebraic Geom. 9 (2000), no. 1, 93-109.
  • 9. S. Kleiman, Relative duality for quasicoherent sheaves, Compositio Math. 41 (1980), no. 1, 39-60.
  • 10. J. Kollár, Toward moduli of singular varieties, Compositio Math. 56 (1985), no.3, 369-398.
  • 11. J. Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235-268.
  • 12. J. Kollár, Push forward and base change for open immersions, unpublished manuscript, 1994.
  • 13. J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299-338.
  • 14. E. Viehweg, Quasi-Projective Moduli of Polarized Manifolds, Springer-Verlag, Berlin, 1995.


Additional Information

Brendan Hassett
Affiliation: Department of Mathematics–MS 136, Rice University, 6100 S. Main St., Houston Texas 77005-1892
Email: hassett@math.rice.edu

Sándor J. Kovács
Affiliation: Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195
Email: kovacs@math.washington.edu

DOI: https://doi.org/10.1090/S1056-3911-03-00331-X
Received by editor(s): August 8, 2001
Published electronically: September 24, 2003
Additional Notes: The first author was supported in part by an NSF Postdoctoral Fellowship, NSF Grant DMS-0070537, and the Institute of Mathematical Sciences of the Chinese University of Hong Kong. The second author was supported in part by NSF Grants DMS-019607 and DMS-0092165.

American Mathematical Society