Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



Real algebraic morphisms and Del Pezzo surfaces of degree $2$

Authors: Nuria Joglar-Prieto and Frédéric Mangolte
Journal: J. Algebraic Geom. 13 (2004), 269-285
Published electronically: September 24, 2003
MathSciNet review: 2047699
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $X$ and $Y$ be affine nonsingular real algebraic varieties. A general problem in Real Algebraic Geometry is to try to decide when a smooth map $f:X\rightarrow Y$ can be approximated by regular maps in the space of ${\mathcal{C}}^\infty$ mappings from $X$ to $Y$, equipped with the ${\mathcal{C}}^\infty$ topology.

In this paper we give a complete solution to this problem when the target space is the standard 2-dimensional sphere and the source space is a geometrically rational real algebraic surface. The approximation result for real algebraic surfaces rational over $\mathbb R$ is due to J. Bochnak and W. Kucharz.

Here we give a detailed description of the more interesting case, namely real Del Pezzo surfaces of degree 2.

References [Enhancements On Off] (What's this?)

  • [BiMi] E. Bierstone and P. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128, 207-302 (1997)
  • [BBK] J. Bochnak, M. Buchner and W. Kucharz, Vector bundles over real algebraic varieties, K-Theory 3, 271-298 (1989). Erratum, K-Theory 4, p. 103 (1990)
  • [BCR] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. (3), vol. 12, Springer-Verlag, 1987; New edition: Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), vol. 36, Springer-Verlag, 1998
  • [BKS] J. Bochnak, W. Kucharz, R. Silhol, Morphisms, line bundles and moduli spaces in real algebraic geometry Pub. Math. I.H.E.S. 86 (1997)
  • [DIK] A. Degtyarev, I. Itenberg, V. Kharlamov, Real Enriques Surfaces, Lecture Notes in Math. 1746, Springer-Verlag, 2000
  • [De] M. Demazure, Surfaces de Del Pezzo, II, III, IV et V, In: Séminaire sur les singularités des surface (Demazure, Pinkham, Teissier eds.), Lecture Notes in Math. 777, Springer-Verlag, 23-69 (1980)
  • [Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag, 1977
  • [Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. of Math. 79, 109-326 (1964)
  • [Jo] N. Joglar-Prieto, Rational surfaces and regular maps into the 2-dimensional sphere Math. Z. 234, 399-405 (2000)
  • [Ko] J. Kollár, Real algebraic surfacese-prints, alg-geom/9712003
  • [Ku] W. Kucharz, Algebraic morphisms into rational real algebraic surfaces J. Algebraic Geometry 8, 569-579 (1999)
  • [Ma] F. Mangolte, Cycles algébriques sur les surfaces K3 réelles, Math. Z. 225, 559-576 (1997)
  • [MR] F. Mangolte, C. Raffalli, Une question d'appuis, to appear (2001) http://www.lama.
  • [MS] J. Milnor, J. Stasheff, Characteristic classes, Princeton Univ. Press, Princeton, 1974
  • [Si] R. Silhol, Real Algebraic Surfaces, Lecture Notes in Math. 1392, Springer-Verlag, Berlin, 1989
  • [Ze] H. G. Zeuthen, Sur les différentes formes des courbes du quatrième ordre, Math. Ann. 7, 410-432 (1874)

Additional Information

Nuria Joglar-Prieto
Affiliation: ITIS CES Felipe II, Universidad Complutense de Madrid, C/Capitán 39, 28300 Aranjuez Madrid, Spain

Frédéric Mangolte
Affiliation: Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget du Lac Cedex, France

Received by editor(s): October 1, 2001
Published electronically: September 24, 2003
Additional Notes: The first author was supported by a Marie Curie Postdoctoral Fellowship (number HPMF-CT-1999-00019) at the Department of Mathematics at the Vrije Universiteit, Amsterdam

Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2017 University Press, Inc.
AMS Website