Kustin-Miller unprojection with complexes

Author:
Stavros Argyrios Papadakis

Journal:
J. Algebraic Geom. **13** (2004), 249-268

Published electronically:
October 15, 2003

MathSciNet review:
2047698

Full-text PDF

Abstract | References | Additional Information

Abstract: A main ingredient for the Kustin-Miller unprojection is the module , where is a local Gorenstein ring and a codimension one ideal with Gorenstein. We prove a method of calculating it in a relative setting using resolutions. We give three applications. In the first we generalise a result of Catanese, Franciosi, Hulek, and Reid (*Embeddings of curves and surfaces*, Nagoya Math. J. **154** (1999), 185-220). The second and the third are about Tom and Jerry, two families of Gorenstein codimension four rings with resolutions.

**[Al]**Altinok S.,*Graded rings corresponding to polarised K3 surfaces and -Fano 3-folds*. Univ. of Warwick Ph.D. thesis, Sept. 1998, 93+ vii pp.**[AK]**Altman, A. and Kleiman, S.,*Introduction to Grothendieck duality theory*. Lecture Notes in Mathematics, Vol. 146. Springer-Verlag, 1970**[BE]**Buchsbaum D. and Eisenbud D.,*Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension*. Amer. J. Math.**99**(1977), 447-485**[BH]**Bruns, W. and Herzog, J.,*Cohen-Macaulay rings*. Revised edition, Cambridge Studies in Advanced Mathematics 39. CUP, 1998**[BrR]**Brown G. and Reid M.,*Mory flips of Type A*(provisional title), in preparation**[BV]**Bruns, W. and Vetter, U.,*Determinantal rings*. Lecture Notes in Math. 1327. Springer, 1988**[CM]**Corti A. and Mella M.,*Birational geometry of terminal quartic 3-folds I*, in preparation**[CPR]**Corti A., Pukhlikov A. and Reid M.,*Birationally rigid Fano hypersurfaces*, in Explicit birational geometry of 3-folds, A. Corti and M. Reid (eds.), CUP 2000, 175-258**[CFHR]**Catanese, F., Franciosi, M., Hulek, K. and Reid, M.,*Embeddings of curves and surfaces*. Nagoya Math. J.**154**(1999), 185-220**[FOV]**Flenner, H., O'Carrol, L. and Vogel, W.,*Joins and intersections*. Springer Monographs in Mathematics. Springer-Verlag, 1999**[Ei]**Eisenbud, D.,*Commutative algebra, with a view toward algebraic geometry*. Graduate Texts in Mathematics, 150. Springer-Verlag, 1995**[Har]**Hartshorne, R.,*Algebraic Geometry*. Graduate Texts in Mathematics, 52. Springer-Verlag, 1977**[KL]**Kleppe H. and Laksov D.,*The algebraic structure and deformation of Pfaffian schemes*. J. Algebra**64**(1980), 167-189**[KM]**Kustin, A. and Miller, M.,*Constructing big Gorenstein ideals from small ones*. J. Algebra**85**(1983), 303-322**[P]**Stavros Papadakis, Gorenstein rings and Kustin-Miller unprojection, Univ. of Warwick Ph.D. thesis, Aug 2001, vi + 72 pp., get from www.maths.warwick.ac. uk/~miles/doctors/Stavros**[PR]**Papadakis, S. and Reid, M.,*Kustin-Miller unprojection without complexes*, to appear J. Alg. Geom., math.AG/0011094, 18 pp.**[R1]**Reid, M.,*Nonnormal del Pezzo surfaces*. Publ. Res. Inst. Math. Sci.**30**(1994), 695-727**[R2]**Reid, M.,*Examples of Type IV unprojection*, math.AG/0108037, 16 pp.**[R3]**Reid, M.,*Graded Rings and Birational Geometry*, in Proc. of algebraic symposium (Kinosaki, Oct 2000), K. Ohno (Ed.) 1-72, available from www.maths. warwick.ac.uk/~miles/3folds**[T]**Takagi, H.,*On the classification of -Fano 3-folds of Gorenstein index 2*. I, II, RIMS preprint 1305, Nov. 2000, 66 pp.

Additional Information

**Stavros Argyrios Papadakis**

Affiliation:
Math Institute, University of Warwick, Coventry CV4 7AL, England

Address at time of publication:
Fakultät für Mathematik und Informatik, Geb. 27, Universität des Saarlandes, D-66123 Saarbrücken, Gernamy

Email:
spapad@maths.warwick.ac.uk, papadakis@math.uni-sb.de

DOI:
http://dx.doi.org/10.1090/S1056-3911-03-00350-3

Received by editor(s):
August 24, 2001

Published electronically:
October 15, 2003

Additional Notes:
This work is part of a Warwick Ph.D. thesis \cite{P}, financially supported by the Greek State Scholarships Foundation