An interpretation of multiplier ideals via tight closure

Author:
Shunsuke Takagi

Translated by:

Journal:
J. Algebraic Geom. **13** (2004), 393-415

Published electronically:
December 4, 2003

MathSciNet review:
2047704

Full-text PDF

Abstract | References | Additional Information

Abstract: Hara [Trans. Amer. Math. Soc. **353** (2001), 1885-1906] and Smith [Comm. Algebra **28** (2000), 5915-5929] independently proved that in a normal -Gorenstein ring of characteristic , the test ideal coincides with the multiplier ideal associated to the trivial divisor. We extend this result for a pair of a normal ring and an effective -Weil divisor on . As a corollary, we obtain the equivalence of strongly -regular pairs and pairs.

**[AM]**I. Aberbach and B. MacCrimmon,*Some results on test ideals*, Proc. Edinburgh Math. Soc. (2)**42**(1999), 541-549.**[BS]**J. Briançon and H. Skoda,*Sur la clôture intégrale d'un idéal de germes de fonctions holomorphes en un point de*, C. R. Acad. Sci. Paris. Sér. A**278**(1974), 949-951.**[DEL]**J.-P. Demailly, L. Ein and R. Lazarsfeld,*A subadditivity property of multiplier ideals*, Michigan. Math. J.**48**(2000), 137-156.**[ELS]**L. Ein, R. Lazarsfeld, and K. Smith,*Uniform bounds and symbolic powers on smooth varieties*, Invent. Math.**144**(2001), 241-252.**[Fe]**R. Fedder,*F-purity and rational singularity*, Trans. Amer. Math. Soc.**278**(1983), 461-480.**[Ha1]**N. Hara,*F-regularity and F-purity of graded rings*, J. Algebra,**172**(1995), 804-818.**[Ha2]**-,*A characterization of rational singularities in terms of injectivity of Frobenius maps*, Amer. J. Math.**120**(1998), 981-996.**[Ha3]**-,*Geometric interpretation of tight closure and test ideals*, Trans. Amer. Math. Soc.**353**(2001), 1885-1906.**[HW]**N. Hara and K.-i. Watanabe,*F-regular and F-pure rings vs. log terminal and log canonical singularities*, J. Alg. Geom.**11**(2002), 363-392.**[HY]**N. Hara and K. Yoshida,*A generalization of tight closure and multiplier ideals*, Trans. Amer. Math. Soc.**355**(2003), 3143-3174.**[HH1]**M. Hochster and C. Huneke,*Tight closure, invariant theory and the Briançon-Skoda theorem*, J. Amer. Math. Soc.**3**(1990), 31-116.**[HH2]**-,*Tight closure and strong F-regularity*, Mem. Soc. Math. France**38**(1989), 119-133.**[HH3]**-,*Comparison of symbolic and ordinary powers of ideals*, Invent. Math.**147**(2002), 349-369.**[HR]**M. Hochster and J. Roberts,*The purity of the Frobenius and local cohomology*, Adv. Math.**21**(1976), 117-172.**[Hu]**C. Huneke, ``Tight closure and its applications,'' CBMS Regional Conf. Ser. Math.**88**, Amer. Math. Soc., Providence (1996).**[Ko]**J. Kollár,*Singularities of pairs: in ``Algebraic Geometry-Santa Cruz 1995"*, Proc. Symp. Pure Math.**62**(1997), 221-287.**[KM]**J. Kollár and S. Mori, ``Birational Geometry of Algebraic Varieties,'' Cambridge Tracts in Math.**134**, Cambridge University Press, 1998.**[Ku]**E. Kunz,*On Noetherian rings of characteristic*, Amer. J. Math.**98**(1976), 999-1013.**[La]**R. Lazarsfeld,*Multiplier ideals for algebraic geometers*, preprint.**[Mc]**B. MacCrimmon,*Weak F-regularity is strong F-regularity for rings with isolated non- -Gorenstein points*, Trans. Amer. Math. Soc. (to appear).**[MS]**V. B. Mehta and V. Srinivas,*A characterization of rational singularities*, Asian. J. Math.**1**(1997), 249-278.**[Sm1]**K. Smith,*F-rational rings have rational singularities*, Amer. J. Math.**119**(1997), 159-180.**[Sm2]**-,*The multiplier ideal is a universal test ideal*, Comm. Algebra**28**(2000), 5915-5929.**[Wa]**K.-i. Watanabe,*A characterization of ``bad'' singularities via the Frobenius map*, Proceedings of the 18-th symposium on commutative algebra (Toyama, 1996), 122-126, 1996. (in Japanese).**[Wi]**L. J. Williams,*Uniform stability of kernels of Koszul cohomology indexed by the Frobenius endomorphism*, J. Algebra**172**(1995), 721-743.

Additional Information

**Shunsuke Takagi**

Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo 153-8914, Japan

Email:
stakagi@ms.u-tokyo.ac.jp

DOI:
https://doi.org/10.1090/S1056-3911-03-00366-7

Received by editor(s):
December 17, 2001

Published electronically:
December 4, 2003