Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

On the Chow ring of a K3 surface


Authors: Arnaud Beauville and Claire Voisin
Translated by:
Journal: J. Algebraic Geom. 13 (2004), 417-426
DOI: https://doi.org/10.1090/S1056-3911-04-00341-8
Published electronically: January 5, 2004
MathSciNet review: 2047674
Full-text PDF

Abstract | References | Additional Information

Abstract: We show that the Chow group of $0$-cycles on a K3 surface contains a class of degree 1 with remarkable properties: any product of divisors is proportional to this class, and so is the second Chern class $c_2$.


References [Enhancements On Off] (What's this?)

  • [B] A. Beauville: Sur l'anneau de Chow d'une variété abélienne. Math. Annalen 273 (1986), 647-651.
  • [Bl] S. Bloch: Some elementary theorems about algebraic cycles on Abelian varieties. Invent. Math. 37 (1976), 215-228.
  • [Bl-S] S. Bloch, V. Srinivas: Remarks on correspondences and algebraic cycles. Amer. J. Math. 105 (1983), 1235-1253.
  • [C] G. Ceresa: $C$ is not algebraically equivalent to $C\sp{-}$ in its Jacobian. Ann. of Math. 117 (1983), 285-291.
  • [G-S] B. Gross, C. Schoen: The modified diagonal cycle on the triple product of a pointed curve. Ann. Inst. Fourier (Grenoble) 45 (1995), 649-679.
  • [M] D. Mumford: Rational equivalence of $0$-cycles on surfaces. J. Math. Kyoto Univ. 9 (1968), 195-204.
  • [M-M] S. Mori, S. Mukai: Mumford's theorem on curves on $K3$ surfaces. Algebraic Geometry (Tokyo/Kyoto 1982), LNM 1016, 351-352; Springer-Verlag (1983).
  • [R] A. A. Rojtman: The torsion of the group of $0$-cycles modulo rational equivalence. Ann. of Math. 111 (1980), 553-569.
  • [S] T. Shioda: On the Picard number of a Fermat surface. J. Fac. Sci. Univ. Tokyo 28 (1982), 725-734.
  • [SGA6] Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6). Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Lecture Notes in Math. 225, Springer-Verlag, Berlin-New York (1971).


Additional Information

Arnaud Beauville
Affiliation: Institut Universitaire de France & Laboratoire J.-A. Dieudonné (UMR 6621 du CNRS), Université de Nice, Parc Valrose, F-06108 Nice cedex 2, France
Email: beauville@math.unice.fr

Claire Voisin
Affiliation: Institut de Mathématiques de Jussieu (UMR 7586 du CNRS), Case 247, 4 place Jussieu, F-75252 Paris cedex 05, France
Email: voisin@math.jussieu.fr

DOI: https://doi.org/10.1090/S1056-3911-04-00341-8
Received by editor(s): November 21, 2001
Published electronically: January 5, 2004

American Mathematical Society