Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



Newton-Puiseux roots of Jacobian determinants

Authors: Tzee-Char Kuo and Adam Parusinski
Translated by:
Journal: J. Algebraic Geom. 13 (2004), 579-601
Published electronically: February 11, 2004
MathSciNet review: 2047682
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $f(x,y), g(x,y)$ denote either a pair of holomorphic function germs, or a pair of monic polynomials in $x$ whose coefficients are Laurent series in $y$. A polar root is a Newton-Puiseux root, $x=\gamma(y)$, of the Jacobian $J=f_yg_x-f_xg_y$, but not a root of $f\cdot g$.

We define the tree-model, $T(f,g)$, for the pair, using the set of contact orders of the Newton-Puiseux roots of $f$ and $g$. Our main results (§2) describe how the $\gamma$'s climb, and leave, the tree (like vines). We also show by two examples (§5) that when the tree has what we call collinear points or bars, the way the $\gamma$'s leave the tree is not an invariant of the tree; this phenomenon is in sharp contrast to that in the one function case where the tree $T(f)$ completely determines how the polar roots split away.

Our results yield a factorisation of the Jacobian determinant in $\mathbb{C}\{x,y\}$(§6). As in the one-function case, the factors need not be invariants, nor irreducible. However, some factors do yield invariant truncations and intersection multiplicities (§7).

References [Enhancements On Off] (What's this?)

  • 1. S. S. Abhyankar and A. Assi, Jacobian of meromorphic curves, Proceedings of the Indian Academy of Sciences (Math. Sci.) 109 No. 2, (May, 1999), 117-163.
  • 2. S. S. Abhyankar and A. Assi, Factoring the Jacobian, Contemporary Mathematics, Vol. 266, 2000.
  • 3. A. Assi, Meromorphic Plane Curves, Math. Z., 230 (1999), 165-183.
  • 4. E. Garcia-Barroso, Sur les courbes polaires d'une courbe plane réduite, Proc. London Math. Soc., (3) 81 (2000), 1-28.
  • 5. E. Garcia-Barroso and B. Teissier, Concentration multi-échelles de courbure dans des fibres de Milnor, Comment. Math. Helv., 74 (1999), 398-418.
  • 6. M. Boguslawska, On the Lojasiewicz exponent of the gradient of holomorphic functions, Bull. Polish Acad. Sci. Math. 47 (1999), no. 4, 337-343.
  • 7. E. Casas-Alvero, Singularities of polar curves, Compositio Math. 89 (1993), 339-359.
  • 8. H. Eggers, Polarinvarianten und die Topologie von Kurvensingulariten, Bonner Math. Schr., 147, (1983).
  • 9. S. Izumi, S. Koike and T.-C. Kuo, Computations and stability of the Fukui invariants, Compositio Math. 130 (2002), 49-73.
  • 10. T.-C. Kuo and Y.C. Lu, On analytic function germs of two complex variables, Topology, 16 (1977), 299-310.
  • 11. T.-C. Kuo and A. Parusinski, Newton Polygon Relative to an Arc, in Real and Complex Singularities (São Carlos, 1998), Chapman & Hall Res. Notes Math., 412, 2000, 76-93.
  • 12. T.-C. Kuo and A. Parusinski, On Puiseux roots of Jacobians, Proc. Japan Acad., 78, Ser. A (2002), 55-59.
  • 13. Lê Dung Tràng, Topological use of polar curves, in Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974), pp. 507-512. Amer. Math. Soc., Providence, R.I., 1975.
  • 14. M. Merle, Invariants polaires des courbes planes, Invent. Math., 41 (1977), 299-310.
  • 15. F. Pham, Deformations equisingularitiés des ideaux jacobiens de courbes planes, in Proc. Liverpool Singularities Symposium, II, (ed. C.T.C. Wall), (1971), 218-233, Lecture Notes Math., 209, Springer-Verlag.
  • 16. R. J. Walker, Algebraic Curves, Springer-Verlag, (1972).
  • 17. O. Zariski, Studies in equisingularity I, Amer J. Math. 2, 87, (1965), 507-536.

Additional Information

Tzee-Char Kuo
Affiliation: School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, 2006, Australia

Adam Parusinski
Affiliation: Département de Mathématiques, U.M.R. 6093 du C.N.R.S, Université d’Angers, 2, bd Lavoisier, 49045 Angers Cedex, France

Received by editor(s): April 1, 2002
Published electronically: February 11, 2004
Additional Notes: The first author is partially supported by an ARC Large Grant

Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2017 University Press, Inc.
AMS Website