Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
  Journal of Algebraic Geometry
Journal of Algebraic Geometry
  
Online ISSN 1534-7486; Print ISSN 1056-3911
 

On $\psi$-invariant subvarieties of semiabelian varieties and the Manin-Mumford conjecture


Authors: Richard Pink and Damian Roessler
Translated by:
Journal: J. Algebraic Geom. 13 (2004), 771-798
Published electronically: February 11, 2004
MathSciNet review: 2073195
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $A$ be a semiabelian variety over an algebraically closed field of arbitrary characteristic, endowed with a finite morphism $\psi: A\to A$. In this paper, we give an essentially complete classification of all $\psi$-invariant subvarieties of $A$. For example, under some mild assumptions on $(A,\psi)$ we prove that every $\psi$-invariant subvariety is a finite union of translates of semiabelian subvarieties. This result is then used to prove the Manin-Mumford conjecture in arbitrary characteristic and in full generality. Previously, it had been known only for the group of torsion points of order prime to the characteristic of $K$. The proofs involve only algebraic geometry, though scheme theory and some arithmetic arguments cannot be avoided.


References [Enhancements On Off] (What's this?)

  • 1. Abramovich, D.: Subvarieties of semiabelian varieties. Compositio Math. 90 (1994), 37-52.
  • 2. Bogomolov, F. A.: Sur l'algébricité des représentations $\ell$-adiques. C. R. Acad. Sci. Paris, Sér. A, t. 290 (1980), 701-703.
  • 3. Bogomolov, F. A.: Points of finite order on abelian varieties. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 4, 782-804.
  • 4. Bouscaren, E: Théorie des modèles et conjecture de Manin-Mumford [d'après Ehud Hrushovski]. Sém. Bourbaki no. 870 (1999-2000).
  • 5. Fontaine, M.: Groupes $p$-divisibles sur les corps locaux. Astérisque 47-48 (1977).
  • 6. Grothendieck, A., et al.: Revêtements étales et groupe fondamental. Séminaire de Géométrie Algébrique du Bois-Marie 1960-61, (SGA1), Lect. Notes in Math. 224, Berlin etc.: Springer (1971).
  • 7. Grothendieck, A., et al.: Schémas en Groupes I-III. Séminaire de Géométrie Algébrique du Bois-Marie 1962/64 (SGA3), Lect. Notes in Math. 151-153, Berlin etc.: Springer (1970).
  • 8. Hrushovski, E.: The Mordell-Lang conjecture for function fields. J. Amer. Math. Soc. 9, no. 3 (1996), 667-690.
  • 9. Hrushovski, E.: The Manin-Mumford conjecture and the model theory of difference fields. Ann. Pure Appl. Logic 112 (2001), no. 1, 43-115.
  • 10. Lang, S.: Algebraic groups over finite fields. Amer. J. Math. 78 (1956), 555-563.
  • 11. Manin, Yu. I.: The theory of commutative formal groups over fields of finite characteristic. Russian Math. Surveys 18 No. 6 (1963), 1-83.
  • 12. Oesterlé, J.: Courbes sur une variété abélienne [d'après M. Raynaud]. Sém. Bourbaki 625 (1983-84).
  • 13. Pink, R., Roessler, D.: On Hrushovski's proof of the Manin-Mumford conjecture. Preprint May 31, 2002, 6p.
  • 14. Raynaud, M.: Courbes sur une variété abélienne et points de torsion. Invent. Math. 71 (1983), no. 1, 207-233.
  • 15. Raynaud, M.: Sous-variétés d'une variété abélienne et points de torsion. Arithmetic and geometry, Vol. I, 327-352, Progr. Math. 35, Birkhäuser Boston, Boston, MA, 1983.
  • 16. Serre, J.-P.: Oeuvres, vol. IV (1985-1998). Springer 2000.
  • 17. Ullmo, E.: Positivité et discrétion des points algébriques des courbes. Ann. of Math. (2) 147 (1998), no. 1, 167-179.
  • 18. Weil, A.: Variétés abéliennes et courbes algébriques. Paris: Hermann, 1948.
  • 19. Zhang, S.-W.: Equidistribution of small points on abelian varieties. Ann. of Math. (2) 147 (1998), no. 1, 159-165.


Additional Information

Richard Pink
Affiliation: Department of Mathematics, ETH-Zentrum, CH-8092 Zürich, Switzerland
Email: pink@math.ethz.ch

Damian Roessler
Affiliation: Department of Mathematics, ETH-Zentrum, CH-8092 Zürich, Switzerland
Email: roessler@math.ethz.ch

DOI: http://dx.doi.org/10.1090/S1056-3911-04-00368-6
PII: S 1056-3911(04)00368-6
Received by editor(s): July 17, 2002
Received by editor(s) in revised form: September 13, 2002
Published electronically: February 11, 2004


Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2014 University Press, Inc.
Comments: jag-query@ams.org
AMS Website