Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

A logarithmic view towards semistable reduction


Author: Jakob Stix
Journal: J. Algebraic Geom. 14 (2005), 119-136
DOI: https://doi.org/10.1090/S1056-3911-04-00388-1
Published electronically: June 24, 2004
MathSciNet review: 2092128
Full-text PDF

Abstract | References | Additional Information

Abstract: A smooth, proper family of curves creates a monodromy action of the fundamental group of the base on the ${\rm H}^1$ of a fibre. The geometric condition of T. Saito for the action of the wild inertia of a boundary point to be trivial is transformed to the condition of logarithmic smooth reduction. The proof emphasizes methods and results from logarithmic geometry. It applies to quasi-projective smooth curves with étale boundary divisor.


References [Enhancements On Off] (What's this?)

  • [Ab00] Abbes, A., Réduction semistable des courbes d'après Artin, Deligne, Grothendieck, Mumford, Saito, Winters, $\ldots$, in: Courbes semi-stables et groupe fondamental en géométrie algébrique (ed. J.-B. Bost, F. Loeser, M. Raynaud), Prog. Math. 187, Birkhäuser (2000), 59-110. MR 1768094 (2001i:14033)
  • [Ba95] Bauer, W., On smooth, unramified, étale and flat morphisms of fine logarithmic schemes, Math. Nachr. 176 (1995), 5-16. MR 1361122 (96h:14026)
  • [Ha59] Hall, M. jr., The theory of groups, The Macmillan Co., New York (1959). MR 0103215 (21:1996)
  • [Il02] Illusie, L., An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology, Astérisque 279 (2002), 271-322. MR 1922832 (2003h:14032)
  • [Ka89] Kato, K., Logarithmic structures of Fontaine-Illusie, in Algebraic Analysis, Geometry and Number Theory, The Johns Hopkins University Press (1989), 191-224. MR 1463703 (99b:14020)
  • [Ka94] Kato, K., Toric singularities, Amer. J. Math. 116 (1994), 1073-1099. MR 1296725 (95g:14056)
  • [Li68] Lichtenbaum, S., Curves over discrete valuation rings, Amer. J. Math. 90 (1968), 380-405. MR 0230724 (37:6284)
  • [Na98] Nakayama, C., Nearby cycles for log smooth families, Comp. Math. 112 (1998), 45-75. MR 1622751 (99g:14044)
  • [Sai87] Saito, T., Vanishing cycles and geometry of curves over a discrete valuation ring, Amer. J. Math. 109 (1987), 1043-1085. MR 0919003 (88h:14036)
  • [Sai04] Saito, T., Log smooth extension of a family of curves and semi-stable reduction, J. Algebraic Geom. 13 (2004), 287-321.
  • [Sx02] Stix, J., Projective anabelian curves in positive characteristic and descent theory for log étale covers, thesis, Bonner Mathematische Schriften 354 (2002). MR 2012864
  • [Vi02] Vidal, I., Contributions à la cohomologie étale des schémas et des log schémas, thèse, 2002.


Additional Information

Jakob Stix
Affiliation: Mathematisches Institut, Universität Bonn, Beringstraße 1, 53115 Bonn, Germany
Email: stix@math.uni-bonn.de

DOI: https://doi.org/10.1090/S1056-3911-04-00388-1
Received by editor(s): May 13, 2003
Received by editor(s) in revised form: February 10, 2004
Published electronically: June 24, 2004
Additional Notes: The author acknowledges the financial support provided through the European Community’s Human Potential Program under contract HPRN-CT-2000-00114, GTEM

American Mathematical Society