Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Multiplier ideals, $V$-filtration, and spectrum


Authors: Nero Budur and Morihiko Saito
Journal: J. Algebraic Geom. 14 (2005), 269-282
DOI: https://doi.org/10.1090/S1056-3911-04-00398-4
Published electronically: December 9, 2004
MathSciNet review: 2123230
Full-text PDF

Abstract | References | Additional Information

Abstract: For an effective divisor on a smooth algebraic variety or a complex manifold, we show that the associated multiplier ideals coincide essentially with the filtration induced by the filtration $V$constructed by B. Malgrange and M. Kashiwara. This implies another proof of a theorem of L. Ein, R. Lazarsfeld, K.E. Smith, and D. Varolin that any jumping coefficient in the interval $(0,1]$ is a root of the Bernstein-Sato polynomial up to sign. We also give a refinement (using mixed Hodge modules) of the formula for the coefficients of the spectrum for exponents not greater than one or greater than the dimension of the variety minus one.


References [Enhancements On Off] (What's this?)

  • 1. Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, Astérisque 100, Soc. Math. France, Paris, 1982. MR 0751966 (86g:32015)
  • 2. Borel, A. et al., Algebraic ${\mathcal{D}}$-modules, Perspectives in Math. 2, Academic Press, 1987. MR 0882000 (89g:32014)
  • 3. Budur, N., thesis.
  • 4. -, On Hodge spectrum and multiplier ideals, Math. Ann. 327 (2003), no. 2, 257-270. MR 2015069
  • 5. -, Multiplier ideals and filtered $D$-modules, preprint.
  • 6. Deligne, P., Théorie de Hodge I, Actes Congrès Intern. Math., Part 1 (1970), 425-430; II, Publ. Math. IHES, 40 (1971), 5-58; III, ibid. 44 (1974), 5-77. MR 0441965 (56:356)
  • 7. -, Le formalisme des cycles évanescents, in SGA7 XIII and XIV, Lect. Notes in Math. 340, Springer, Berlin, 1973, pp. 82-115 and 116-164.
  • 8. Demailly, J.-P., $L^{2}$-Methods and effective results in algebraic geometry, Proc. Intern. Congr. Math. (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 817-827. MR 1403982 (98e:32055)
  • 9. Denef, J. and Loeser, F., Motivic Igusa zeta functions, J. Alg. Geom. 7 (1998), 505-537. MR 1618144 (99j:14021)
  • 10. Ein, L., Multiplier ideals, vanishing theorems and applications, Proc. Symp. Pure Math., A.M.S. 62 Part 1, (1997), 203-219. MR 1492524 (98m:14006)
  • 11. Ein, L. and Lazarsfeld, R., Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997), 243-258. MR 1396893 (97d:14063)
  • 12. Ein, L., Lazarsfeld, R., Smith, K.E. and Varolin, D., Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), no. 3, 469-506. MR 2068967
  • 13. Grauert, H. and Riemenschneider, O., Verschwindungssätze für analytische Kohomologiegruppen auf Komplexen Räumen, Inv. Math. 11 (1970), 263-292. MR 0302938 (46:2081)
  • 14. Kashiwara, M., $B$-functions and holonomic systems, Inv. Math. 38 (1976/77), 33-53. MR 0430304 (55:3309)
  • 15. -, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982), Lect. Notes in Math. 1016, Springer, Berlin, 1983, pp. 134-142. MR 0726425 (85e:58137)
  • 16. Kashiwara, M. and Kawai, T., Second-microlocalization and asymptotic expansions, Proc. Internat. Colloq., Centre Phys. (Les Houches, 1979), Lecture Notes in Phys., 126, Springer, Berlin, 1980, pp. 21-76. MR 0579740 (81i:58038)
  • 17. Kollár, J., Singularities of pairs, Proc. Symp. Pure Math., A.M.S. 62 Part 1, (1997), 221-287. MR 1492525 (99m:14033)
  • 18. Loeser, F., Quelques conséquences locales de la théorie de Hodge, Ann. Inst. Fourier 35 (1985) 75-92. MR 0781779 (86g:32007)
  • 19. Malgrange, B., Le polynôme de Bernstein d'une singularité isolée, in Lect. Notes in Math. 459, Springer, Berlin, 1975, pp. 98-119. MR 0419827 (54:7845)
  • 20. -, Polynôme de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque 101-102 (1983), 243-267. MR 0737934 (86f:58148)
  • 21. Nadel, A.M., Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. Math. 132 (1990), 549-596. MR 1078269 (92d:32038)
  • 22. Navarro Aznar, V., Sur la théorie de Hodge-Deligne, Inv. Math. 90 (1987), 11-76. MR 0906579 (88j:32037)
  • 23. Saito, M., Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ. 24 (1988), 849-995. MR 1000123 (90k:32038)
  • 24. -, Mixed Hodge modules, Publ. RIMS, Kyoto Univ. 26 (1990), 221-333. MR 1047415 (91m:14014)
  • 25. -, On $b$-function, spectrum and rational singularity, Math. Ann. 295 (1993), 51-74. MR 1198841 (95b:32051)
  • 26. Steenbrink, J.H.M., Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) Alphen a/d Rijn: Sijthoff & Noordhoff 1977, pp. 525-563. MR 0485870 (58:5670)
  • 27. -, The spectrum of hypersurface singularity, Astérisque 179-180 (1989), 163-184. MR 1042806 (90m:32027)
  • 28. Vaquié, M., Irrégularité des revêtements cycliques, in Singularities (Lille, 1991), London Math. Soc. Lecture Note Ser., 201, Cambridge Univ. Press, Cambridge, 1994, pp. 383-419.
  • 29. Varchenko, A., Asymptotic Hodge structure in the vanishing cohomology, Math. USSR Izv. 18 (1982), 465-512.


Additional Information

Nero Budur
Affiliation: Department of Mathematics, University of Illinois at Chicago, 851 South Morgan Street (M/C 249), Chicago, Illinois 60607-7045
Address at time of publication: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
Email: nero@math.uic.edu, nbudur@math.jhu.edu

Morihiko Saito
Affiliation: RIMS Kyoto University, Kyoto 606-8502 Japan
Email: msaito@kurims.kyoto-u.ac.jp

DOI: https://doi.org/10.1090/S1056-3911-04-00398-4
Received by editor(s): June 15, 2003
Published electronically: December 9, 2004

American Mathematical Society