The closed topological vertex via the Cremona transform

Authors:
Jim Bryan and Dagan Karp

Journal:
J. Algebraic Geom. **14** (2005), 529-542

DOI:
https://doi.org/10.1090/S1056-3911-04-00394-7

Published electronically:
December 30, 2004

MathSciNet review:
2129009

Full-text PDF

Abstract | References | Additional Information

Abstract: We compute the local Gromov-Witten invariants of the ``closed vertex'', that is, a configuration of three 's meeting in a single triple point in a Calabi-Yau threefold. The method is to express the local invariants of the vertex in terms of ordinary Gromov-Witten invariants of a certain blowup of and then to compute those invariants via the geometry of the Cremona transformation.

**1.**Mina Aganagic, Albrecht Klemm, Marcos Marino, and Cumrun Vafa.

The Topological Vertex.

CALT-68-2439, HUTP-03/A032, HU-EP-03/24, CERN-TH/2003-111.

arXiv:hep-th/0305132.**2.**Jim Bryan, Sheldon Katz, and Naichung Conan Leung.

Multiple covers and the integrality conjecture for rational curves in Calabi-Yau threefolds.*J. Algebraic Geom.*, 10(3):549-568, 2001. MR**1832332 (2002j:14047)****3.**Jim Bryan and Naichung Conan Leung.

The enumerative geometry of surfaces and modular forms.*J. Amer. Math. Soc.*, 13(2):371-410, 2000. MR**1750955 (2001i:14071)****4.**Jim Bryan and Rahul Pandharipande.

Curves in Calabi-Yau 3-folds and Topological Quantum Field Theory,

Duke Math. J. (to appear).**5.**Jim Bryan and Rahul Pandharipande.

BPS states of curves in Calabi-Yau 3-folds.*Geom. Topol.*, 5:287-318 (electronic), 2001. MR**1825668 (2002h:14092)****6.**Duiliu-Emanuel Diaconescu and Bogdan Florea.

Localization and Gluing of Topological Amplitudes.

arXiv:hep-th/0309143.**7.**C. Faber and R. Pandharipande.

Hodge integrals and Gromov-Witten theory.*Invent. Math.*, 139(1):173-199, 2000. MR**1728879 (2000m:14057)****8.**Andreas Gathmann.

Gromov-Witten invariants of blow-ups.*J. Algebraic Geom.*, 10(3):399-432, 2001. MR**1832328 (2002b:14069)****9.**Tom Graber and Eric Zaslow.

Open-String Gromov-Witten Invariants: Calculations and a Mirror ``Theorem''.

arXiv:hep-th/0109075.**10.**S. Hosono, M.-H. Saito, and A. Takahashi.

Holomorphic anomaly equation and BPS state counting of rational elliptic surface.*Adv. Theor. Math. Phys.*, 3(1):177-208, 1999. MR**1704198 (2001b:14085)****11.**J. Hu.

Gromov-Witten invariants of blow-ups along points and curves.*Math. Z.*, 233(4):709-739, 2000. MR**1759269 (2001c:53115)****12.**Sheldon Katz, Albrecht Klemm, and Cumrun Vafa.

M-theory, topological strings and spinning black holes.*Adv. Theor. Math. Phys.*, 3(5):1445-1537, 1999. MR**1796683 (2002b:81124)****13.**Jun Li, Chiu-Chu Liu, Kefeng Liu, and Jian Zhou.

A mathematical theory of the topological vertex.

In preparation.**14.**R. Pandharipande.

Hodge integrals and degenerate contributions.*Comm. Math. Phys.*, 208(2):489-506, 1999. MR**1729095 (2002k:14087)****15.**Jacob Shapiro.

On the Gopakumar-Vafa conjecture for local surfaces.

In preparation.

Additional Information

**Jim Bryan**

Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

Email:
jbryan@math.ubc.ca

**Dagan Karp**

Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

Email:
dkarp@math.ubc.ca

DOI:
https://doi.org/10.1090/S1056-3911-04-00394-7

Received by editor(s):
January 1, 2004

Received by editor(s) in revised form:
April 1, 2004

Published electronically:
December 30, 2004