On the failure of pseudo-nullity of Iwasawa modules

Authors:
Yoshitaka Hachimori and Romyar T. Sharifi

Journal:
J. Algebraic Geom. **14** (2005), 567-591

Published electronically:
March 24, 2005

MathSciNet review:
2129011

Full-text PDF

Abstract | References | Additional Information

Abstract: Consider the family of CM-fields which are pro- -adic Lie extensions of number fields of dimension at least two, which contain the cyclotomic -extension, and which are ramified at only finitely many primes. We show that the Galois groups of the maximal unramified abelian pro- extensions of these fields are not always pseudo-null as Iwasawa modules for the Iwasawa algebras of the given -adic Lie groups. The proof uses Kida's formula for the growth of -invariants in cyclotomic -extensions of CM-fields. In fact, we give a new proof of Kida's formula which includes a slight weakening of the usual assumption. This proof uses certain exact sequences involving Iwasawa modules in procyclic extensions. These sequences are derived in an appendix by the second author.

**[BH]**P. N. Balister and S. Howson,*Note on Nakayama’s lemma for compact Λ-modules*, Asian J. Math.**1**(1997), no. 2, 224–229. MR**1491983**, 10.4310/AJM.1997.v1.n2.a2**[Bha]**A. Bhave, Ph.D. thesis, TIFR, Bombay, in preparation.**[CH]**J. H. Coates and S. Howson,*Euler characteristics and elliptic curves. II*, J. Math. Soc. Japan**53**(2001), no. 1, 175–235. MR**1800527**, 10.2969/jmsj/05310175**[CSS]**J. Coates, P. Schneider, and R. Sujatha,*Modules over Iwasawa algebras*, J. Inst. Math. Jussieu**2**(2003), no. 1, 73–108. MR**1955208**, 10.1017/S1474748003000045**[CS]**J. Coates and R. Sujatha,*Fine Selmer groups of elliptic curves over**-adic Lie extensions*, preprint.**[DdMS]**J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal,*Analytic pro-𝑝 groups*, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR**1720368****[FM]**Jean-Marc Fontaine and Barry Mazur,*Geometric Galois representations*, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 41–78. MR**1363495****[FW]**Bruce Ferrero and Lawrence C. Washington,*The Iwasawa invariant 𝜇_{𝑝} vanishes for abelian number fields*, Ann. of Math. (2)**109**(1979), no. 2, 377–395. MR**528968**, 10.2307/1971116**[Gr]**Ralph Greenberg,*Iwasawa theory—past and present*, Class field theory—its centenary and prospect (Tokyo, 1998) Adv. Stud. Pure Math., vol. 30, Math. Soc. Japan, Tokyo, 2001, pp. 335–385. MR**1846466****[HM]**Yoshitaka Hachimori and Kazuo Matsuno,*An analogue of Kida’s formula for the Selmer groups of elliptic curves*, J. Algebraic Geom.**8**(1999), no. 3, 581–601. MR**1689359****[HV]**Yoshitaka Hachimori and Otmar Venjakob,*Completely faithful Selmer groups over Kummer extensions*, Doc. Math.**Extra Vol.**(2003), 443–478 (electronic). Kazuya Kato’s fiftieth birthday. MR**2046605****[Hr1]**Michael Harris,*𝑝-adic representations arising from descent on abelian varieties*, Compositio Math.**39**(1979), no. 2, 177–245. MR**546966****[Hr2]**Michael Harris,*Correction to: “𝑝-adic representations arising from descent on abelian varieties” [Compositio Math. 39 (1979), no. 2, 177–245; MR0546966 (80j:14035)]*, Compositio Math.**121**(2000), no. 1, 105–108. MR**1753112**, 10.1023/A:1001730616194**[Ho1]**S. Howson,*Iwasawa theory of elliptic curves for**-adic Lie extensions*, Ph.D. thesis, University of Cambridge, 1998.**[Ho2]**Susan Howson,*Euler characteristics as invariants of Iwasawa modules*, Proc. London Math. Soc. (3)**85**(2002), no. 3, 634–658. MR**1936815**, 10.1112/S0024611502013680**[IKY]**Yasutaka Ihara, Masanobu Kaneko, and Atsushi Yukinari,*On some properties of the universal power series for Jacobi sums*, Galois representations and arithmetic algebraic geometry (Kyoto, 1985/Tokyo, 1986) Adv. Stud. Pure Math., vol. 12, North-Holland, Amsterdam, 1987, pp. 65–86. MR**948237****[Iw1]**Kenkichi Iwasawa,*Riemann-Hurwitz formula and 𝑝-adic Galois representations for number fields*, Tôhoku Math. J. (2)**33**(1981), no. 2, 263–288. MR**624610**, 10.2748/tmj/1178229453**[Iw2]**Kenkichi Iwasawa,*On cohomology groups of units for 𝑍_{𝑝}-extensions*, Amer. J. Math.**105**(1983), no. 1, 189–200. MR**692110**, 10.2307/2374385**[Ja]**Uwe Jannsen,*Iwasawa modules up to isomorphism*, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 171–207. MR**1097615****[Ki]**Yûji Kida,*𝑙-extensions of CM-fields and cyclotomic invariants*, J. Number Theory**12**(1980), no. 4, 519–528. MR**599821**, 10.1016/0022-314X(80)90042-6**[Ku]**L. Kuz'min,*Some duality theorems for cyclotomic**-extensions of algebraic number fields of CM type*, Math. USSR-Izv.**14**(1980), 441-498.**[La]**S. Lang,*Cyclotomic fields I and II*, Combined 2nd ed., Springer-Verlag, New York, 1990.**[NSW]**Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg,*Cohomology of number fields*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR**1737196****[Oh]**Masami Ohta,*On cohomology groups attached to towers of algebraic curves*, J. Math. Soc. Japan**45**(1993), no. 1, 131–183. MR**1195688**, 10.2969/jmsj/04510131**[Ra]**Ravi Ramakrishna,*Deforming an even representation*, Invent. Math.**132**(1998), no. 3, 563–580. MR**1625720**, 10.1007/s002220050233**[Sh1]**R. Sharifi,*Massey products and ideal class groups*, preprint, arXiv:math.NT/ 0308165.**[Sh2]**R. Sharifi,*Iwasawa theory and the Eisenstein ideal*, Preprint, arXiv:math.NT/ 0501236.**[Ve1]**Otmar Venjakob,*On the structure theory of the Iwasawa algebra of a 𝑝-adic Lie group*, J. Eur. Math. Soc. (JEMS)**4**(2002), no. 3, 271–311. MR**1924402**, 10.1007/s100970100038**[Ve2]**Otmar Venjakob,*A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory*, J. Reine Angew. Math.**559**(2003), 153–191. With an appendix by Denis Vogel. MR**1989649**, 10.1515/crll.2003.047**[Ve3]**Otmar Venjakob,*On the Iwasawa theory of 𝑝-adic Lie extensions*, Compositio Math.**138**(2003), no. 1, 1–54. MR**2002953**, 10.1023/A:1025413030203

Additional Information

**Yoshitaka Hachimori**

Affiliation:
CICMA, Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8, Canada

Email:
yhachi@mathstat.concordia.ca

**Romyar T. Sharifi**

Affiliation:
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

Email:
sharifi@math.mcmaster.ca

DOI:
https://doi.org/10.1090/S1056-3911-05-00396-6

Received by editor(s):
June 27, 2004

Published electronically:
March 24, 2005

Additional Notes:
The first author was partially supported by Gakushuin University and the 21st Century COE Program at the Graduate School of Mathematical Sciences of the University of Tokyo. The second author was supported by the Max Planck Institute for Mathematics.