Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Links and analytic invariants of superisolated singularities


Authors: I. Luengo-Velasco, A. Melle-Hernández and A. Némethi
Journal: J. Algebraic Geom. 14 (2005), 543-565
DOI: https://doi.org/10.1090/S1056-3911-05-00397-8
Published electronically: March 24, 2005
MathSciNet review: 2129010
Full-text PDF

Abstract | References | Additional Information

Abstract: Using superisolated singularities we present examples and counterexamples to some of the most important conjectures regarding invariants of normal surface singularities. More precisely, we show that the ``Seiberg-Witten invariant conjecture''(of Nicolaescu and the third author), the ``Universal abelian cover conjecture'' (of Neumann and Wahl) and the ``Geometric genus conjecture'' fail (at least at that generality in which they were formulated). Moreover, we also show that for Gorenstein singularities (even with integral homology sphere links) besides the geometric genus, the embedded dimension and the multiplicity (in particular, the Hilbert-Samuel function) also fail to be topological; and in general, the Artin cycle does not coincide with the maximal (ideal) cycle.


References [Enhancements On Off] (What's this?)

  • 1. Artal Bartolo, E.: Forme de Jordan de la monodromie des singularités superisolées de surfaces, Mem. Amer. Math. Soc. 525, 1994. MR 1204839 (94j:32030)
  • 2. Artal Bartolo, E.; Cassou-Noguès, Pi.; Luengo, I.; Melle Hernández, A.: Monodromy conjecture for some surface singularities, Ann. Sci. École Norm. Sup. (4) 35 (2002), 605-640. MR 1981174 (2004e:32030)
  • 3. Artin, M.: Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496. MR 0146182 (26:3704)
  • 4. Artin, M.: On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136. MR 0199191 (33:7340)
  • 5. Collin, O. and Saveliev, N.: A geometric proof of the Fintushel-Stern formula, Adv. in Math. 147 (1999), 304-314. MR 1734525 (2001b:57023)
  • 6. Collin, O. and Saveliev, N.: Equivariant Casson invariant for knots and the Neumann-Wahl formula, Osaka J. Math. 37 (2000), 57-71. MR 1750270 (2001d:57014)
  • 7. Fenske, T.: Rational 1- and 2-cuspidal plane curves, Beiträge Algebra Geom. 40 (1999), 309-329. MR 1720107 (2000i:14034)
  • 8. Fernández de Bobadilla, J.; Luengo-Valesco, I.; Melle-Hernández, A. and Némethi, A.: On rational cuspidal projective plane curves, manuscript in preparation.
  • 9. Fintushel, R. and Stern, R.J.: Instanton homology of Seifert fibered homology 3-spheres, Proc. London Math. Soc. (3) 61 (1991), 109-137. MR 1051101 (91k:57029)
  • 10. Fujita, G.: A splicing formula for the Casson-Walker's invariant, Math. Ann. 296 (1993), 327-338. MR 1219905 (94h:57026)
  • 11. Laufer, H.B.: On rational singularities, Amer. J. Math. 94 (1972), 597-608. MR 0330500 (48:8837)
  • 12. Laufer, H.B.: Taut two-dimensional singularities, Math. Ann. 205 (1973), 131-164. MR 0333238 (48:11563)
  • 13. Laufer, H.B.: On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295. MR 0568898 (58:27961)
  • 14. Laufer, H.B.: On $\mu$ for surface singularities, Several complex variables (Proc. Sympos. Pure Math. 30, Part 1, Williams Coll., Williamstown, Mass., 1975), 45-49. Amer. Math. Soc., Providence, R. I., 1977. MR 0450287 (56:8583)
  • 15. Lescop, C.: Global Surgery Formula for the Casson-Walker Invariant, Annals of Math. Studies, vol.140, Princeton University Press, 1996. MR 1372947 (97c:57017)
  • 16. Luengo, I.: The $\mu$-constant stratum is not smooth, Invent. Math. 90 (1987), 139-152. MR 0906582 (88m:32021)
  • 17. Melle-Hernández, A.: Milnor numbers for surface singularities, Israel J. Math. 115 (2000), 29-50. MR 1749672 (2001i:32044)
  • 18. Namba, M.: Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied Mathematics 88 Marcel Dekker, Inc., New York, (1984). MR 0768929 (86d:14021)
  • 19. Némethi, A.: Five lectures on normal surface singularities, lectures delivered at the Summer School in Low dimensional topology Budapest, Hungary, 1998; Bolyai Society Math. Studies 8 (1999), 269-351. MR 1747271 (2001g:32066)
  • 20. Némethi, A.: Dedekind sums and the signature of $f(x,y)+z^N$, Selecta Mathematica, New series 4 (1998), 361-376. MR 1669948 (99m:32050)
  • 21. Némethi, A.: Dedekind sums and the signature of $f(x,y)+z^N$, II., Selecta Mathematica, New series 5 (1999), 161-179. MR 1694898 (2000f:32039)
  • 22. Némethi, A.: ``Weakly'' Elliptic Gorenstein Singularities of Surfaces, Invent. math. 137 (1999), 145-167. MR 1703331 (2000e:32037)
  • 23. Némethi, A.: On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds, arXiv:math.AG/0310083.
  • 24. Némethi, A.: Line bundles associated with normal surface singularities, arXiv:math.AG/0310084.
  • 25. Némethi, A.: Invariants of normal surface singularities, Proceedings of the Conference: Real and Complex Singularities, San Carlos, Brazil, August 2002; Contemp. Math., 354, pp. 161-208, Amer. Math. Soc., Providence, RI, 2004. MR 2087811
  • 26. Némethi, A. and Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities, Geometry and Topology 6 (2002), 269-328. MR 1914570 (2003i:14048)
  • 27. Némethi, A. and Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities II (singularities with good $\textbf{C}^*$-action), J. London Math. Soc. (2) 69 (2004), 593-607. MR 2050035
  • 28. Némethi, A. and Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities III (splicings and cyclic covers), arXiv:math.AG/0207018.
  • 29. Neumann, W.: Abelian covers of quasihomogeneous surface singularities, Singularities, Arcata 1981, Proc. Symp. Pure Math. 40 (Amer. Math. Soc. 1983), 233-243. MR 0713252 (85g:32018)
  • 30. Neumann, W. and Wahl, J.: Casson invariant of links of singularities, Comment. Math. Helv. 65 (1991), 58-78. MR 1036128 (91c:57022)
  • 31. Neumann, W. and Wahl, J.: Universal abelian covers of surface singularities, Trends on Singularities, A. Libgober and M. Tibar (eds). Birkhäuser Verlag, 2002, 181-190. MR 1900786 (2003c:32028)
  • 32. Neumann, W. and Wahl, J.: Universal abelian covers of quotient-cusps, Math. Ann. 326 (2003), 75-93. MR 1981612 (2004d:32039)
  • 33. Neumann, W. and Wahl, J.: Complex surface singularities with integral homology sphere links, arXiv:math.AG/0301165.
  • 34. Okuma, T.: Numerical Gorenstein elliptic singularities, preprint.
  • 35. Pinkham, H.: Normal surface singularities with $\textbf{C}^*$-action, Math. Ann. 227 (1977), 183-193. MR 0432636 (55:5623)
  • 36. G.-M. Greuel, G. Pfister, and H. Schönemann. SINGULAR 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de.
  • 37. Tomari, M.: A $p_g$-formula and elliptic singularities, Publ. R.I.M.S. Kyoto University 21 (1985), 297-354. MR 0785140 (86h:14029)
  • 38. Turaev, V.G.: Torsion invariants of $Spin^c$-structures on $3$-manifolds, Math. Res. Letters 4 (1997), 679-695. MR 1484699 (98k:57038)
  • 39. Wahl, M.J.: Equisingular deformations of normal surface singularities, I, Ann. of Math. 104 (1976), 325-356. MR 0422270 (54:10261)
  • 40. Yau, S.S.-T.: On almost minimally elliptic singularities, Bull. Amer. Math. Soc. 83 (1977), 362-364. MR 0432912 (55:5891)
  • 41. Yau, S.S.-T.: On strongly elliptic singularities, Amer. J. Math. 101 (1979), 855-884. MR 0536043 (81a:32011)
  • 42. Yau, S.S.-T.: On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980), 269-329. MR 0552260 (80j:32021)
  • 43. Zariski, O.: Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971), 481-491. MR 0277533 (43:3266)


Additional Information

I. Luengo-Velasco
Affiliation: Facultad de Matemáticas, Universidad Complutense, Plaza de Ciencias, E-28040, Madrid, Spain
Email: iluengo@mat.ucm.es

A. Melle-Hernández
Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
Email: amelle@mat.ucm.es

A. Némethi
Affiliation: Rényi Institute of Mathematics, Budapest, Hungary
Email: nemethi@math.ohio-state.edu, nemethi@renyi.hu

DOI: https://doi.org/10.1090/S1056-3911-05-00397-8
Received by editor(s): March 29, 2004
Received by editor(s) in revised form: June 19, 2004
Published electronically: March 24, 2005
Additional Notes: The first two authors are partially supported by BFM2001-1488-C02-01. The third author is partially supported by NSF grant DMS-0304759.

American Mathematical Society