Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Classification of primary $\mathbb{Q}$-Fano threefolds with anti-canonical Du Val $K3$ surfaces, I


Author: Hiromichi Takagi
Journal: J. Algebraic Geom. 15 (2006), 31-85
DOI: https://doi.org/10.1090/S1056-3911-05-00416-9
Published electronically: June 27, 2005
MathSciNet review: 2177195
Full-text PDF

Abstract | References | Additional Information

Abstract: If a non-Gorenstein $\mathbb{Q}$-Fano threefold with only cyclic quotient terminal singularities has anti-canonical Du Val $K3$ surfaces and the anti-canonical class generates the group of numerical equivalence classes of divisors, then the dimension of the space of global sections of the anti-canonical sheaf is shown to be not greater than ten. Such $\mathbb{Q}$-Fano threefolds with the dimension not less than nine are classified.


References [Enhancements On Off] (What's this?)

  • [ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves Vol. I, Grundlehren der Mathematischen Wissenschaften, vol. 267, Springer-Verlag, New York, 1985. MR 0770932 (86h:14019)
  • [Ale91] V. Alexeev, Ample Weil divisors on ${K}3$ surfaces with Du Val singularities, Duke Math. J. 64 (1991), 617-624. MR 1141287 (92k:14032)
  • [Ale94] -, General elephants of $\mathbb{Q}$-Fano $3$-folds, Compositio Math. 91 (1994), 91-116. MR 1273928 (95f:14032)
  • [Alt] S. Altinok, Graded rings corresponding to polarized ${K}3$ surfaces and $\mathbb{Q}$-fano $3$-folds, Univ. of Warwick, Ph. D. thesis, available at: http://www.maths.warwick.ac.uk/ ~miles/doctors/Selma/
  • [AW93] M. Andreatta and J. Wisniewski, A note on nonvanishing and applications, Duke Math. J. 72 (1993), 739-755. MR 1253623 (95c:14007)
  • [CF93] F. Campana and H. Flenner, Projective threefolds containing a smooth rational surface with ample normal bundle, J. reine angew. Math. 440 (1993), 77-98. MR 1225958 (94d:14038)
  • [Cut88] S. Cutkosky, Elementary contractions of Gorenstein threefolds, Math. Ann. 280 (1988), 521-525. MR 0936328 (89k:14070)
  • [Fan37] G. Fano, Sulle varietà a tre dimensioni a curve-sezioni canoniche, R. Accad. d'Italia Mem. Cl. Sci. Fis. Mat. Nat. 8 (1936/37), 23-64.
  • [Fle00] A. R. Fletcher, Working with weighted complete intersections, Explicit birational geometry of $3$-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 101-174. MR 1798982 (2001k:14089)
  • [Fuj80] T. Fujita, On the structure of polarized manifolds with total deficiency one, part I, J. Math. Soc. of Japan 32 (1980), 709-725. MR 0589109 (82a:14015)
  • [Fuj81] -, On the structure of polarized manifolds with total deficiency one, part II, J. Math. Soc. of Japan 33 (1981), 415-434. MR 0620281 (82j:14034)
  • [Fuj84] -, On the structure of polarized manifolds with total deficiency one, part III, J. Math. Soc. of Japan 36 (1984), 75-89. MR 0723595 (85e:14061)
  • [Fuj86] -, Projective varieties of $\Delta$-genus one, Algebraic and Topological Theories (Kinosaki, 1984), Kinokuniya, Tokyo, 1986, to the memory of Dr. Takehiko MIYATA, pp. 149-175. MR 1102257
  • [Fuj90a] -, Classification Theories of Polarized Varieties, London Mathematical Society Lecture Note Series, vol. 155, Cambridge University Press, 1990.
  • [Fuj90b] -, On singular Del Pezzo varieties, Algebraic geometry (L'Aquila, $1988$), Lecture Notes in Math., vol. 1417, Springer-Verlag, Berlin-New York, 1990, pp. 117-128. MR 1040555 (91b:14057)
  • [Gus83] N. P. Gushel, Fano varieties of genus $8$$($Russian$)$, Usp. Mat. Nauk 38 (1983), no. 1, 163-164, English translation: Russian Math. Surv. 38 (1983), no. 1, 192-193. MR 0693729 (84m:14044)
  • [Hay99] T. Hayakawa, Blowing ups of $3$-dimensional terminal singularities, Publ. Res. Inst. Math. Sci. 35 (1999), no. 3, 515-570. MR 1710753 (2002a:14038)
  • [Hay00] -, Blowing ups of $3$-dimensional terminal singularities, II, Publ. Res. Inst. Math. Sci. 36 (2000), no. 3, 423-456. MR 1781436 (2002a:14039)
  • [Isk] V. A. Iskovskih, Double projection from a line on Fano threefolds of the first kind $($Russian$)$, Mat. Sb. 180, no. 2, English transl. in Math. USSR-Sb. 66 (1990) no. 1 265-284. MR 0993458 (90j:14048)
  • [Isk77] -, Fano $3$-folds $1$ $($Russian$)$, Izv. Akad. Nauk SSSR Ser. Mat 41 (1977), English transl. in Math. USSR Izv. 11 (1977), 485-527.
  • [Isk78] -, Fano $3$-folds, II (Russian), Izv. Akad. Nauk SSSR Ser. Mat 42 (1978), 506-549, English transl. in Math. USSR Izv. 12 (1978), 469-506. MR 0503430 (80c:14023b)
  • [Isk79] -, Anticanonical models of three-dimensional algebraic varieties $($Russian$)$, Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki 12 (1979), 59-157, English transl. in J. Soviet. Math. 13 (1980) 745-814. MR 0537685 (81i:14026b)
  • [K92] J. Kollár et al., Flips and abundance for algebraic threefolds, vol. 211, Astérisque, 1992.
  • [Kaw86] Y. Kawamata, On the plurigenera of minimal algebraic $3$-folds with ${K}\equiv 0$, Math. Ann. 275 (1986), 539-546. MR 0859328 (88c:14049)
  • [Kaw92] -, Boundedness of $\mathbb{Q}$-Fano threefolds, Proc. Int. Conf. Algebra, Contemp. Math., vol. 131, Amer. Math. Soc., Providence, RI, 1992, pp. 439-445. MR 1175897 (93g:14047)
  • [KM92] J. Kollár and S. Mori, Classification of three dimensional flips, J. of Amer. Math. Soc. 5 (1992), 533-703. MR 1149195 (93i:14015)
  • [Kol89] J. Kollár, Flops, Nagoya Math. J. 113 (1989), 15-36. MR 0986434 (90e:14011)
  • [Kol96] -, Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete 3, vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180 (98c:14001)
  • [Lau77] H. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295. MR 0568898 (58:27961)
  • [LM03] J. M. Landsberg and L. Manivel, On the projective geometry of rational homogeneous varieties, Comment. Math. Helv. 78 (2003), no. 1, 65-100. MR 1966752 (2004a:14050)
  • [LS85] J. Lipman and A. J. Sommese, On blowing down projective spaces in singular varieties, J. Reine. Angew. Math. 362 (1985), 51-62. MR 0809965 (87c:14046)
  • [Min01] T. Minagawa, Deformations of weak Fano $3$-folds with only terminal singularities, Osaka J. Math. 38 (2001), no. 3, 533-540. MR 1860839 (2002j:14048)
  • [Min03] -, Global smoothing of singular weak Fano $3$-folds, J. Math. Soc. Japan 55 (2003), no. 3, 695-711. MR 1978218 (2004b:14074)
  • [MM85] S. Mori and S. Mukai, Classification of Fano $3$-folds with $b_2 \geq 2$, I, Algebraic and Topological Theories (Kinosaki, 1984), Kinokuniya, Tokyo, 1985, to the memory of Dr. Takehiko MIYATA, pp. 496-545. MR 1102273
  • [Mor82] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133-176. MR 0662120 (84e:14032)
  • [Muk95a] S. Mukai, Curve and symmetric spaces, I, Amer. J. Math. 117 (1995), 1627-1644. MR 1363081 (96m:14040)
  • [Muk95b] -, New development of the theory of Fano threefolds: Vector bundle method and moduli problem, in Japanese, Sugaku 47 (1995), 125-144, English transl. in Sugaku Expositions 15 (2002), no. 2, 125-150.
  • [Pap01] S. Papadakis, Gorenstein rings and Kustin-Miller unprojection, Univ. of Warwick Ph. D. thesis, available at $\text{www.maths.warwick.ac.uk /\~ miles/doctors/Stavros}$, 2001.
  • [Pap04] -, Kustin-Miller unprojection with complexes, J. Algebraic Geom. 13 (2004), no. 2, 249-268. MR 2047698 (2005d:13025)
  • [Pin83] H. Pinkham, Factorization of birational maps in dimension $3$, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Symp.Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 343-371. MR 0713260 (85g:14015)
  • [PRe04] S. Papadakis and M. Reid, Kustin-Miller unprojection without complexes, J. Algebraic Geom. 13 (2004), no. 3, 563-577. MR 2047681
  • [Rei80] M. Reid, Canonical threefolds, Géométrie Algébrique Angers (A. Beauville, ed.), Sijthoff Noordhoff, 1980, pp. 273-310. MR 0605348 (82i:14025)
  • [Reid87] M. Reid, Young person's guide to canonical singularities, Algebraic Geometry, Bowdoin (Brunswick, Maine, 1985), Proc. Symp. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345-414. MR 0927963 (89b:14016)
  • [Reid94] -, Nonnormal del Pezzo surface, Publ. Res. Inst. Math. Sci. 30 (1994), 695-728. MR 1311389 (96a:14042)
  • [San95] T. Sano, On classification of non-Gorenstein $\mathbb{Q}$-Fano $3$-folds of Fano index $1$, J. Math. Soc. Japan 47 (1995), no. 2, 369-380. MR 1317287 (96b:14055)
  • [San96] -, Classification of non-Gorenstein $\mathbb{Q}$-Fano $d$-folds of Fano index greater than $d-2$, Nagoya Math. J. 142 (1996), 133-143. MR 1399470 (97h:14059)
  • [Sho79a] V. V. Shokurov, The existence of a straight line on Fano $3$-folds, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 921-963, English transl. in Math. USSR Izv. 15 (1980) 173-209. MR 0548510 (81k:14032)
  • [Sho79b] -, Smoothness of the general anticanonical divisor on a Fano $3$-folds, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 430-441, English transl. in Math. USSR Izv. 14 (1980) 395-405. MR 0534602 (80h:14020)
  • [Taka] H. Takagi, Classification of primary $\mathbb{Q}$-Fano $3$-folds with anti-canonical Du Val K$3$ surfaces. II, preprint.
  • [Taka02a] -, On classification of $\mathbb{Q}$-Fano $3$-folds of Gorenstein index $2$. I, Nagoya Math. J. 167 (2002), 117-155. MR 1924722 (2003j:14056)
  • [Taka02b] -, On classification of $\mathbb{Q}$-Fano $3$-folds of Gorenstein index $2$. II, Nagoya Math. J. 167 (2002), 157-216. MR 1924722 (2003j:14056)
  • [Take89] K. Takeuchi, Some birational maps of Fano $3$-folds, Compositio Math. 71 (1989), 265-283. MR 1022045 (90k:14041)


Additional Information

Hiromichi Takagi
Affiliation: Graduate School of Mathematical Sciences, the University of Tokyo, Tokyo, 153-8914, Japan
Email: takagi@ms.u-tokyo.ac.jp

DOI: https://doi.org/10.1090/S1056-3911-05-00416-9
Received by editor(s): June 17, 2004
Received by editor(s) in revised form: April 6, 2005, April 22, 2005, and May 12, 2005
Published electronically: June 27, 2005

American Mathematical Society