Stability manifold of

Author:
So Okada

Journal:
J. Algebraic Geom. **15** (2006), 487-505

Published electronically:
March 9, 2006

MathSciNet review:
2219846

Full-text PDF

Abstract | References | Additional Information

Abstract: We describe the stability manifold of the bounded derived category of coherent sheaves on , denoted .

**1.**A. A. Beĭlinson,*Coherent sheaves on 𝑃ⁿ and problems in linear algebra*, Funktsional. Anal. i Prilozhen.**12**(1978), no. 3, 68–69 (Russian). MR**509388****2.**A. I. Bondal,*Representations of associative algebras and coherent sheaves*, Izv. Akad. Nauk SSSR Ser. Mat.**53**(1989), no. 1, 25–44 (Russian); English transl., Math. USSR-Izv.**34**(1990), no. 1, 23–42. MR**992977****3.**Alexei Bondal and Dmitri Orlov,*Reconstruction of a variety from the derived category and groups of autoequivalences*, Compositio Math.**125**(2001), no. 3, 327–344. MR**1818984**, 10.1023/A:1002470302976**4.**T. Bridgeland, Stability conditions on triangulated categories, math.AG/0212237.**5.**T. Bridgeland, Stability conditions on K3 surfaces, math.AG/0307164.**6.**Sergei I. Gelfand and Yuri I. Manin,*Methods of homological algebra*, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. MR**1950475****7.**Harvey Cohn,*Conformal mapping on Riemann surfaces*, Dover Publications, Inc., New York, 1980. Reprint of the 1967 edition; Dover Books on Advanced Mathematics. MR**594937****8.**Michael R. Douglas,*D-branes on Calabi-Yau manifolds*, European Congress of Mathematics, Vol. II (Barcelona, 2000) Progr. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 449–466. MR**1909947****9.**Michael R. Douglas,*D-branes, categories and 𝒩=1 supersymmetry*, J. Math. Phys.**42**(2001), no. 7, 2818–2843. Strings, branes, and M-theory. MR**1840318**, 10.1063/1.1374448**10.**Michael R. Douglas,*Dirichlet branes, homological mirror symmetry, and stability*, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 395–408. MR**1957548****11.**A. L. Gorodentsev, S. A. Kuleshov, and A. N. Rudakov,*𝑡-stabilities and 𝑡-structures on triangulated categories*, Izv. Ross. Akad. Nauk Ser. Mat.**68**(2004), no. 4, 117–150 (Russian, with Russian summary); English transl., Izv. Math.**68**(2004), no. 4, 749–781. MR**2084563**, 10.1070/IM2004v068n04ABEH000497

Additional Information

**So Okada**

Affiliation:
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-9305

Email:
okada@math.umass.edu

DOI:
http://dx.doi.org/10.1090/S1056-3911-06-00432-2

Received by editor(s):
January 11, 2005

Received by editor(s) in revised form:
August 28, 2005

Published electronically:
March 9, 2006