Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 

 

Stability manifold of $ \mathbb{P}^{1}$


Author: So Okada
Journal: J. Algebraic Geom. 15 (2006), 487-505
Published electronically: March 9, 2006
MathSciNet review: 2219846
Full-text PDF

Abstract | References | Additional Information

Abstract: We describe the stability manifold of the bounded derived category $ \operatorname{D}(\mathbb{P}^{1})$ of coherent sheaves on $ \mathbb{P}^{1}$, denoted $ \operatorname{Stab}(\operatorname{D}(\mathbb{P}^{1}))$.


References [Enhancements On Off] (What's this?)

  • 1. A. A. Beĭlinson, Coherent sheaves on 𝑃ⁿ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
  • 2. A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25–44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23–42. MR 992977
  • 3. Alexei Bondal and Dmitri Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), no. 3, 327–344. MR 1818984, 10.1023/A:1002470302976
  • 4. T. Bridgeland, Stability conditions on triangulated categories, math.AG/0212237.
  • 5. T. Bridgeland, Stability conditions on K3 surfaces, math.AG/0307164.
  • 6. Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. MR 1950475
  • 7. Harvey Cohn, Conformal mapping on Riemann surfaces, Dover Publications, Inc., New York, 1980. Reprint of the 1967 edition; Dover Books on Advanced Mathematics. MR 594937
  • 8. Michael R. Douglas, D-branes on Calabi-Yau manifolds, European Congress of Mathematics, Vol. II (Barcelona, 2000) Progr. Math., vol. 202, Birkhäuser, Basel, 2001, pp. 449–466. MR 1909947
  • 9. Michael R. Douglas, D-branes, categories and 𝒩=1 supersymmetry, J. Math. Phys. 42 (2001), no. 7, 2818–2843. Strings, branes, and M-theory. MR 1840318, 10.1063/1.1374448
  • 10. Michael R. Douglas, Dirichlet branes, homological mirror symmetry, and stability, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 395–408. MR 1957548
  • 11. A. L. Gorodentsev, S. A. Kuleshov, and A. N. Rudakov, 𝑡-stabilities and 𝑡-structures on triangulated categories, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 4, 117–150 (Russian, with Russian summary); English transl., Izv. Math. 68 (2004), no. 4, 749–781. MR 2084563, 10.1070/IM2004v068n04ABEH000497


Additional Information

So Okada
Affiliation: Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-9305
Email: okada@math.umass.edu

DOI: http://dx.doi.org/10.1090/S1056-3911-06-00432-2
Received by editor(s): January 11, 2005
Received by editor(s) in revised form: August 28, 2005
Published electronically: March 9, 2006

Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2016 University Press, Inc.
Comments: jag-query@ams.org
AMS Website