Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

The Betti numbers of $ \overline{\mathcal{M}}_{0,n}(r,d)$


Authors: Ezra Getzler and Rahul Pandharipande
Journal: J. Algebraic Geom. 15 (2006), 709-732
DOI: https://doi.org/10.1090/S1056-3911-06-00425-5
Published electronically: May 2, 2006
MathSciNet review: 2237267
Full-text PDF

Abstract | References | Additional Information

Abstract: We calculate the Betti numbers of the coarse moduli space of stable maps of genus 0 to projective space, using a generalization of the Legendre transform.


References [Enhancements On Off] (What's this?)

  • 1. K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants. Duke Math. J. 85 (1996), 1-60. MR 1412436 (98i:14014)
  • 2. K. Behrend and A. O'Halloran, On the cohomology of stable map spaces, Invent. Math. 154 (2003), 385-450. MR 2013785 (2004k:14002)
  • 3. J. Cox, An additive basis for the Chow ring of $ {\overline{\mathcal{M}}} _{0,n}({\mathbb{P}}^r,2)$. math.AG/0501322
  • 4. V.I. Danilov and A.G. Khovanski{\u{\i\/}}\kern.15em, Newton polyhedra and an algorithm for computing Hodge-Deligne numbers. Math. USSR Izvestiya, 29 (1987), 279-298.
  • 5. P. Deligne, Théorie de Hodge. II. Publ. Math. IHES 40 (1971), 5-58. MR 0498551 (58:16653a)
  • 6. W. Fulton and R. MacPherson, A compactification of configuration spaces. Ann. Math., 139 (1994), 183-225. MR 1259368 (95j:14002)
  • 7. W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology. In ``Algebraic geometry--Santa Cruz 1995,'' Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997, pp. 45-96. MR 1492534 (98m:14025)
  • 8. E. Getzler, Operads and moduli spaces of genus 0 Riemann surfaces. In ``The moduli space of curves,'' Progr. Math. 129, Birkhäuser Boston, Boston, MA, 1995. MR 1363058 (96k:18008)
  • 9. E. Getzler, Mixed Hodge structures of configuration spaces. Max-Planck-Institut preprint MPI-96-61. alg-geom/9510018
  • 10. E. Getzler and M. Kapranov, Modular operads. Compositio Math. 110 (1998), 65-126. MR 1601666 (99f:18009)
  • 11. B. Kim and R. Pandharipande, The connectedness of the moduli space of maps to homogeneous spaces. In ``Symplectic geometry and mirror symmetry (Seoul, 2000),'' 187-201, World Sci. Publishing, River Edge, NJ, 2001. MR 1882330 (2002k:14021)
  • 12. M. Kontsevich, Enumeration of rational curves via torus actions, in ``The moduli space of curves (Texel Island, 1994),'' 335-368, Progr. Math. 129, Birkhäuser Boston, Boston, MA, 1995. MR 1363062 (97d:14077)
  • 13. I. G. Macdonald, ``Symmetric Functions and Hall Polynomials.'' Clarendon Press, Oxford, 1995. MR 1354144 (96h:05207)
  • 14. Yu. I. Manin, Generating functions in algebraic geometry and sums over trees, in ``The moduli space of curves (Texel Island, 1994),'' 401-417, Progr. Math. 129, Birkhäuser Boston, Boston, MA, 1995. MR 363064 (97e:14065)
  • 15. Yu. Manin, ``Frobenius manifolds, quantum cohomology, and moduli spaces,'' American Mathematical Society Colloquium Publications, 47. American Mathematical Society, Providence, RI, 1999. MR 1702284 (2001g:53156)
  • 16. A. Mustata and M. Mustata, Intermediate moduli spaces of stable maps. math.AG/0409569
  • 17. D. Oprea, The tautological rings of the moduli spaces of stable maps. math.AG/0404280
  • 18. D. Oprea, Tautological classes on the moduli spaces of stable maps to projective spaces. math.AG/0404284
  • 19. R. Pandharipande, The Chow ring of the non-linear Grassmannian. J. Algebraic Geom. 7 (1998), 123-140. MR 1620694 (99f:14005)
  • 20. R. Pandharipande, Intersections of $ {\mathbb{Q}}$-divisors on Kontsevich's moduli space $ {\overline{\mathcal{M}}} _{0,n}({\mathbb{P}}^r,d)$ and enumerative geometry. Trans. Amer. Math. Soc. 351 (1999), 1481-1505. MR 1407707 (99f:14068)


Additional Information

Ezra Getzler
Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2730
Email: getzler@northwestern.edu

Rahul Pandharipande
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
Email: rahulp@math.princeton.edu

DOI: https://doi.org/10.1090/S1056-3911-06-00425-5
Received by editor(s): February 26, 2005
Published electronically: May 2, 2006

American Mathematical Society