Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homogènes


Authors: Jean-Louis Colliot-Thélène and Boris È. Kunyavskii
Journal: J. Algebraic Geom. 15 (2006), 733-752
DOI: https://doi.org/10.1090/S1056-3911-06-00427-9
Published electronically: June 12, 2006
MathSciNet review: 2237268
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $ k$ be a field of characteristic zero, $ G$ a connected linear algebraic group over $ k$ and $ H$ a connected closed $ k$-subgroup of $ G$. Let $ X$ be a smooth $ k$-compactification of $ Y=G/H$. We prove that the Galois lattice given by the geometric Picard group of $ X$ is flasque. The result was known in the case $ H=1$. We compute this Galois lattice up to addition of a permutation module. When $ G$ is semisimple and simply connected, the result shows that the Brauer group of $ X$ is determined by the maximal toric quotient of $ H$.


References [Enhancements On Off] (What's this?)

  • [Bog] F. A. Bogomolov, Groupe de Brauer des corps d'invariants de groupes algébriques (en russe), Mat. Sb. 180 (1989), 279-293; trad. ang. Math. USSR-Sb. 66 (1990), 285-299. MR 0993459 (90k:14008)
  • [Bo1] M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), 217-239. MR 1242885 (94j:11042)
  • [Bo2] M. Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. reine angew. Math. (Crelle) 473 (1996), 181-194. MR 1390687 (97g:11042)
  • [B/K1] M. Borovoi et B. Kunyavski{\u{\i\/}}\kern.15em, Formulas for the unramified Brauer group of a principal homogeneous space of a linear algebraic group, J. Algebra 225 (2000), 804-821. MR 1741563 (2001h:14017)
  • [B/K2] M. Borovoi et B. Kunyavski{\u{\i\/}}\kern.15em, Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields (with an appendix by P. Gille), J. Al- gebra 276 (2004), 292-339. MR 2054399 (2005c:11047)
  • [CT] J.-L. Colliot-Thélène, Résolutions flasques des groupes réductifs connexes, C. R. Acad. Sc. Paris Sér. I 339 (2004), 331-334. MR 2092058 (2005f:20081)
  • [CT/Gi/Pa] J.-L. Colliot-Thélène, P. Gille et R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), 285-341. MR 2034644 (2005f:11063)
  • [CT/K] J.-L. Colliot-Thélène et B. Kunyavskii, Groupe de Brauer non ramifié des espaces principaux homogènes des groupes linéaires, J. Ramanujan Math. Soc. 13 (1998), 37-49. MR 1626696 (2000c:14021)
  • [CT/San1] J.-L. Colliot-Thélène et J.-J. Sansuc, La $ R$-équivalence sur les tores, Ann. Sci. E.N.S. 10 (1977), 175-229. MR 0450280 (56:8576)
  • [CT/San2] J.-L. Colliot-Thélène et J.-J. Sansuc, La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), 375-492. MR 0899402 (89f:11082)
  • [CT/San3] J.-L. Colliot-Thélène et J.-J. Sansuc, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), 148-205. MR 878473 (88j:14059)
  • [CT/San4] J.-L. Colliot-Thélène et J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), in Proceedings of the Mumbai 2004 International Conference, à paraître.
  • [D] A. Ducros, Dimension cohomologique et points rationnels sur les courbes, J. Algebra 203 (1998), 349-354. MR 1622783 (99e:14024)
  • [G] P. Gille, Cohomologie galoisienne des groupes quasidéployés sur des corps de dimension $ \leq 2$, Compositio Math. 125 (2001), 283-325. MR 1818983 (2002c:11045)
  • [Gr] A. Grothendieck, Le groupe de Brauer, I, II, III, in Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 46-188. MR 0244269 (39:5586a); MR 0244270 (39:5586b); MR 0244271 (39:5586c)
  • [K] J. Kollár, Specialization of zero cycles, Publ. Res. Inst. Math. Sci. 40 (2004), 689-708. MR 2074697 (2005i:14007)
  • [San] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. reine angew. Math. (Crelle) 327 (1981), 12-80. MR 0631309 (83d:12010)
  • [S] J-P. Serre, Corps locaux, deuxième édition, Hermann, Paris, 1968. MR 0354618 (50:7096)
  • [Vos1] V. E. Voskresenski{\u{\i\/}}\kern.15em, Invariants birationnels des tores algébriques (en russe), Uspehi Mat. Nauk 30 (1975), no. 2 (182), 207-208. MR 0506279 (58:22078)
  • [Vos2] V. E. Voskresenski{\u{\i\/}}\kern.15em, Algebraicheskie tory (Tores algébriques), Nauka, Moscow, 1977. MR 0485902 (58:5701)
  • [Vos3] V. E. Voskresenski{\u{\i\/}}\kern.15em, Algebraic groups and their birational invariants, Transl. Math. Monographs 179, Amer. Math. Soc., Providence, R.I., 1998. MR 1634406 (99g:20090)


Additional Information

Jean-Louis Colliot-Thélène
Affiliation: C.N.R.S., UMR 8628, Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France
Email: colliot@math.u-psud.fr

Boris È. Kunyavskii
Affiliation: Bar-Ilan University, Department of Mathematics, 52900 Ramat Gan, Israel
Email: kunyav@macs.biu.ac.il

DOI: https://doi.org/10.1090/S1056-3911-06-00427-9
Received by editor(s): March 26, 2005
Received by editor(s) in revised form: April 21, 2005, and June 23, 2005
Published electronically: June 12, 2006

American Mathematical Society