Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

The Witten top Chern class via $ K$-theory


Author: Alessandro Chiodo
Journal: J. Algebraic Geom. 15 (2006), 681-707
DOI: https://doi.org/10.1090/S1056-3911-06-00444-9
Published electronically: May 2, 2006
MathSciNet review: 2237266
Full-text PDF

Abstract | References | Additional Information

Abstract: The Witten top Chern class is the crucial cohomology class needed to state a conjecture by Witten relating the Gelfand-Diki{\u{\i\/}}\kern.15emhierarchies to higher spin curves. In the paper by Polishchuk and Vaintrob (Contemp. Math., vol. 276, Amer. Math. Soc., 2001, pp. 229-249) an algebraic construction of such a class is provided. We present a more straightforward construction via $ K$-theory. In this way we short-circuit the passage through bivariant intersection theory and the use of MacPherson's graph construction. Furthermore, we show that the Witten top Chern class admits a natural lifting to the $ K$-theory ring.


References [Enhancements On Off] (What's this?)

  • [AJ03] D. Abramovich and Tyler J. Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003), no. 3, 685-699. MR 1937405 (2003k:14027)
  • [AV02] Dan Abramovich and Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), no. 1, 27-75 (electronic). MR 1862797 (2002i:14030)
  • [BFM75] Paul Baum, William Fulton, and Robert MacPherson, Riemann-Roch for singular varieties, Inst. Hautes Études Sci. Publ. Math. (1975), no. 45, 101-145. MR 0412190 (54:317)
  • [BS58] Armand Borel and Jean-Pierre Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97-136. MR 0116022 (22:6817)
  • [Chi] A. Chiodo, Stable twisted curves and their $ r$-spin structures. Preprint: math.AG/ 0603687.
  • [Chi03] -, Higher spin curves and Witten's top Chern class, Ph.D. thesis, University of Cambridge, 2003.
  • [Del73] Pierre Deligne, Cohomologie à supports propres, Théorie des topos et cohomologie étale des schémas. Tome 3, exposé XVII, Springer-Verlag, Berlin, 1973, Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 305.
  • [Ful84] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 0732620 (85k:14004)
  • [Gre88] Mark L. Green, A new proof of the explicit Noether-Lefschetz theorem, J. Differential Geom. 27 (1988), no. 1, 155-159. MR 0918461 (89c:14028)
  • [Gre89] -, Koszul cohomology and geometry, Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publishing, Teaneck, NJ, 1989, pp. 177-200. MR 1082354 (91k:14012)
  • [Jar00] Tyler J. Jarvis, Geometry of the moduli of higher spin curves, Internat. J. Math. 11 (2000), no. 5, 637-663. MR 1780734 (2001f:14050)
  • [JKV01] Tyler J. Jarvis, Takashi Kimura, and Arkady Vaintrob, Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math. 126 (2001), no. 2, 157-212. MR 1827643 (2002d:14052)
  • [Kon92] Maxim Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1-23. MR 1171758 (93e:32027)
  • [McC01] John McCleary, A user's guide to spectral sequences, second ed., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR 1793722 (2002c:55027)
  • [Ols] Martin Olsson, On (log) twisted curves, Preprint: http://www.math.ias.edu/~ molsson/Logcurves.pdf.
  • [Pol04] A. Polishchuk, Witten's top Chern class on the moduli space of higher spin curves, Hertling, Claus (ed.) et al., Frobenius manifolds, Quantum cohomology and singularities. Proceedings of the workshop, Bonn, Germany, July 8-19, 2002, Aspects Math., E36, Vieweg, Wiesbaden, 2004, pp. 253-264. MR 2115773
  • [PV01] A. Polishchuk and A. Vaintrob, Algebraic construction of Witten's top Chern class, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (Providence, RI), Contemp. Math., vol. 276, Amer. Math. Soc., 2001, pp. 229-249. MR 1837120 (2002d:14012)
  • [Wit91] Edward Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, pp. 243-310. MR 1144529 (93e:32028)
  • [Wit93] -, Algebraic geometry associated with matrix models of two-dimensional gravity, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, pp. 235-269. MR 1215968 (94c:32012)


Additional Information

Alessandro Chiodo
Affiliation: Laboratoire J.-A. Dieudonné, Université de Nice, Parc Valrose, 06108 Nice cedex 2, France
Email: chiodo@math.unice.fr

DOI: https://doi.org/10.1090/S1056-3911-06-00444-9
Received by editor(s): February 25, 2005
Received by editor(s) in revised form: May 11, 2005, and December 1, 2005
Published electronically: May 2, 2006
Additional Notes: Supported by the Istituto Nazionale di Alta Matematica, and the Marie Curie Intra-European Fellowship within the sixth European Community Framework Programme, MEIF-CT-2003-501940.

American Mathematical Society