Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

On the invariance and the lower semi-continuity of plurigenera of algebraic varieties


Author: Shigeharu Takayama
Journal: J. Algebraic Geom. 16 (2007), 1-18
DOI: https://doi.org/10.1090/S1056-3911-06-00455-3
Published electronically: August 22, 2006
MathSciNet review: 2257317
Full-text PDF

Abstract | References | Additional Information

Abstract: We state the invariance and the lower semi-continuity of plurigenera for certain families of algebraic varieties.


References [Enhancements On Off] (What's this?)

  • [K99a] Kawamata, Y., Deformations of canonical singularities, J. Amer. Math. Soc. 12 (1999) 85-92. MR 1631527 (99g:14003)
  • [K99b] Kawamata, Y., On the extension problem of pluricanonical forms, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 193-207, Contemp. Math. 241, Amer. Math. Soc., Providence, RI, 1999. MR 1718145 (2000i:14053)
  • [KKMSD73] Kempf, G.; Knudsen, F.; Mumford, D.; Saint-Donat, B.; Toroidal embeddings I, Lecture Notes in Math., vol. 339, Springer-Verlag, New York, 1973. MR 0335518 (49:299)
  • [M93] Manivel, L., Un théorème de prolongement $ L^2$ de sections holomorphes d'un fibré hermitien, Math. Z. 212 (1993) 107-122. MR 1200166 (94e:32050)
  • [N86] Nakayama, N., Invariance of the plurigenera of algebraic varieties under minimal model conjectures, Topology 25 (1986) 237-251. MR 0837624 (87g:14034)
  • [N04] Nakayama, N., Zariski-decomposition and Abundance, MSJ Memoirs 14, Math. Soc. Japan, 2004. MR 2104208 (2005h:14015)
  • [O88] Ohsawa, T., On the extension of $ L^2$ holomorphic functions II, Publ. RIMS 24 (1988) 265-275. MR 0944862 (89d:32031)
  • [O01] Ohsawa, T., On the extension of $ L^2$ holomorphic functions V - Effect of generalization, Nagoya Math. J. 161 (2001) 1-21. Erratum: 163 (2001) 229. MR 1820210 (2001m:32011); MR 1855197 (2002g:32004)
  • [OT87] Ohsawa, T.; Takegoshi, K., On the extension of $ L^2$ holomorphic functions, Math. Z. 195 (1987) 197-204. MR 0892051 (88g:32029)
  • [S98] Siu, Y.-T., Invariance of plurigenera, Invent. Math. 134 (1998) 661-673. MR 1660941 (99i:32035)
  • [S02] Siu, Y.-T., Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semi-positively twisted plurigenera for manifolds not necessarily of general type, Complex geometry (Göttingen, 2000), I. Bauer eds., 223-277, Springer, Berline, 2002. MR 1922108 (2003j:32027a)
  • [S04] Siu, Y.-T., Invariance of plurigenera and torsion-freeness of direct image sheaves of pluricanonical bundles, Finite or infinite dimensional complex analysis and applications, Adv. Complex Anal. Appl., 2, Kluwer Acad. Publ., Dordrecht, (2004) 45-83. MR 2058399 (2005j:32020)
  • [Sk72] Skoda, H., Application des techniques $ L^2$ a la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. Éc. Norm. Sup. 5 (1972) 545-579. MR 0333246 (48:11571)
  • [St88] Stevens, J., On canonical singularities as total spaces of deformations, Abh. Math. Sem. Univ. Hamburg 58 (1988) 275-283. MR 1027448 (91c:14007)
  • [T02] Tsuji, H., Deformation invariance of plurigenera, Nagoya Math. J. 166 (2002) 117-134. MR 1908576 (2003j:32027b)
  • [W81] Wilson, P.M.H., On the canonical ring of algebraic varieties, Compositio Math. 43 (1981) 365-385. MR 0632435 (83g:14014)


Additional Information

Shigeharu Takayama
Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo, 153-8914, Japan
Email: taka@ms.u-tokyo.ac.jp

DOI: https://doi.org/10.1090/S1056-3911-06-00455-3
Received by editor(s): December 10, 2004
Received by editor(s) in revised form: June 17, 2005, August 10, 2005, and May 23, 2006
Published electronically: August 22, 2006
Additional Notes: Research supported in part by Grant-in-Aid for Scientific Research (B) 15340026.

American Mathematical Society