Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 

 

A study of the Hilbert-Mumford criterion for the stability of projective varieties


Authors: Julius Ross and Richard Thomas
Journal: J. Algebraic Geom. 16 (2007), 201-255
Published electronically: November 28, 2006
MathSciNet review: 2274514
Full-text PDF

Abstract | References | Additional Information

Abstract: We make a systematic study of the Hilbert-Mumford criterion for different notions of stability for polarised algebraic varieties $ (X,L)$; in particular for K- and Chow stability. For each type of stability this leads to a concept of slope $ \mu$ for varieties and their subschemes; if $ (X,L)$ is semistable, then $ \mu(Z)\le\mu(X)$ for all $ Z\subset X$. We give examples such as curves, canonical models and Calabi-Yaus. We prove various foundational technical results towards understanding the converse, leading to partial results; in particular this gives a geometric (rather than combinatorial) proof of the stability of smooth curves.


References [Enhancements On Off] (What's this?)

  • [Au] Thierry Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Aiii, A119–A121. MR 0433520
  • [De] Jean-Pierre Demailly, 𝐿² vanishing theorems for positive line bundles and adjunction theory, Transcendental methods in algebraic geometry (Cetraro, 1994) Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 1–97. MR 1603616, 10.1007/BFb0094302
  • [Do1] S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479–522. MR 1916953
  • [Do2] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506
  • [FR] Fine, J. and Ross, J. (2006) A note on positivity of the CM line bundle. To appear in Int. Math. Res. Notices. math.AG/0605302.
  • [Fu] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • [Gi] D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43 (1977), no. 3, 233–282. MR 0498596
  • [Gr] Grothendieck, A. (1960/61). Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert. Séminaire Bourbaki, No. 221.
  • [Ha] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [Hi] F. B. Hildebrand, Introduction to numerical analysis, 2nd ed., McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. International Series in Pure and Applied Mathematics. MR 0347033
  • [HL] Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870
  • [Ka] Kalle Karu, Minimal models and boundedness of stable varieties, J. Algebraic Geom. 9 (2000), no. 1, 93–109. MR 1713521
  • [Ke] George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316. MR 506989, 10.2307/1971168
  • [KM] David Kirby and Hefzi A. Mehran, A note on the coefficients of the Hilbert-Samuel polynomial for a Cohen-Macaulay module, J. London Math. Soc. (2) 25 (1982), no. 3, 449–457. MR 657501, 10.1112/jlms/s2-25.3.449
  • [Kl] Steven L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344. MR 0206009
  • [Ko] János Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235–268. MR 1064874
  • [La] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471
  • [Li] Li, J. (1993). Algebraic geometric interpretation of Donaldson's polynomial invariants. Jour. Diff. Geom. 37, 417-466.
  • [Ma] Eben Matlis, The multiplicity and reduction number of a one-dimensional local ring, Proc. London Math. Soc. (3) 26 (1973), 273–288. MR 0313247
  • [Mo] Ian Morrison, Projective stability of ruled surfaces, Invent. Math. 56 (1980), no. 3, 269–304. MR 561975, 10.1007/BF01390049
  • [Mor] Shigefumi Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2) 116 (1982), no. 1, 133–176. MR 662120, 10.2307/2007050
  • [Mu] David Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39–110. MR 0450272
  • [GIT] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
  • [No] D. G. Northcott, A note on the coefficients of the abstract Hilbet function, J. London Math. Soc. 35 (1960), 209–214. MR 0110731
  • [PT] Paul, S. and Tian, G. (2004). Algebraic and Analytic K-Stability. Preprint math.DG/0405530.
  • [Ro] Ross, J. (2003). Instability of polarised algebraic varieties. Ph.D. thesis, Imperial College.
  • [RT] Ross, J. and Thomas, R. P. (2004). An obstruction to the existence of constant scalar curvature Kähler metrics. Jour. Diff. Geom. 72, 429-466.
  • [Sz] Székelyhidi, G. (2004). Extremal metrics and K-stability. To appear in Bull. LMS. math.AG/0410401.
  • [Ti1] Gang Tian, The 𝐾-energy on hypersurfaces and stability, Comm. Anal. Geom. 2 (1994), no. 2, 239–265. MR 1312688, 10.4310/CAG.1994.v2.n2.a4
  • [Ti2] Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, 10.1007/s002220050176
  • [V] Eckart Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 30, Springer-Verlag, Berlin, 1995. MR 1368632
  • [Y] Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, 10.1002/cpa.3160310304
  • [Zh] Shouwu Zhang, Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), no. 1, 77–105. MR 1420712


Additional Information

Julius Ross
Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
Email: jaross@math.columbia.edu

Richard Thomas
Affiliation: Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom
Email: richard.thomas@imperial.ac.uk

DOI: https://doi.org/10.1090/S1056-3911-06-00461-9
Received by editor(s): April 1, 2005
Received by editor(s) in revised form: May 1, 2006
Published electronically: November 28, 2006
Additional Notes: The first author was supported by an EPSRC Ph.D. studentship. The second author was partially supported by the Royal Society and the Leverhulme Trust.

Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2016 University Press, Inc.
Comments: jag-query@ams.org
AMS Website