Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Lie symmetries of the Chow group of a Jacobian and the tautological subring


Author: A. Polishchuk
Journal: J. Algebraic Geom. 16 (2007), 459-476
DOI: https://doi.org/10.1090/S1056-3911-06-00431-0
Published electronically: June 21, 2006
MathSciNet review: 2306276
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $ J$ be the Jacobian of a smooth projective curve. We define a natural action of the Lie algebra of polynomial Hamiltonian vector fields on the plane, vanishing at the origin, on the Chow group $ \operatorname{CH}(J)_{\mathbb{Q}}$. Using this action we obtain some relations between tautological cycles in $ \operatorname{CH}(J)_{\mathbb{Q}}$.


References [Enhancements On Off] (What's this?)

  • 1. A. Beauville, Diviseurs spéciaux et intersections de cycles dans la jacobienne d'une courbe algébrique, in Enumerative geometry and classical algebraic geometry, 133-142, Birkhauser, 1982. MR 0685767 (84m:14036)
  • 2. A. Beauville, Quelques remarques sur la transformation de Fourier dans l'anneau de Chow d'une variété abélienne, Algebraic Geometry (Tokyo/Kyoto 1982), Lecture Notes in Math. 1016, 238-260. Springer-Verlag, 1983. MR 0726428 (86e:14002)
  • 3. A. Beauville, Sur l'anneau de Chow d'une variété abélienne, Math. Ann. 273 (1986), 647-651. MR 0826463 (87g:14049)
  • 4. A. Beauville, Algebraic cycles on Jacobian varieties, Compositio Math. 140 (2004), 683-688. MR 2041776 (2005h:14019)
  • 5. G. Ceresa, $ C$ is not algebraically equivalent to $ C^-$ in its Jacobian, Annals of Math., 117 (1983), 285-291. MR 0690847 (84f:14005)
  • 6. A. Collino, Poincaré's formulas and hyperelliptic curves, Atti Acc. Sc. Torino 109 (1974-1975), 89-101. MR 0417173 (54:5231)
  • 7. E. Colombo, B. van Geemen, Note on curves in a Jacobian, Compositio Math. 88 (1993), 333-353. MR 1241954 (95j:14030)
  • 8. D. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986. MR 0874337 (88b:17001)
  • 9. K. Künnemann, A Lefschetz decomposition for Chow motives of abelian schemes, Invent. Math. 113 (1993), 85-102. MR 1223225 (95d:14004)
  • 10. S. Mukai, Duality between $ D(X)$ and $ D(\hat{X})$ with its application to Picard sheaves. Nagoya Math. J. 81 (1981), 153-175. MR 0607081 (82f:14036)
  • 11. A. Polishchuk, Analogue of Weil representation for abelian schemes, J. Reine Angew. Math. 543 (2002), 1-37. MR 1887877 (2003k:11097)
  • 12. A. Polishchuk, Abelian Varieties, Theta Functions and the Fourier Transform, Cambridge University Press, 2003. MR 1987784 (2004m:14094)
  • 13. A. Polishchuk, Universal algebraic equivalences between algebraic cycles on Jacobians of curves, Math. Zeitschrift 251 (2005), no. 4, 875-897. MR 2190148
  • 14. R. L. E. Schwarzenberger, Jacobians and symmetric products, Illinois J. Math. 7 (1963), 257-268. MR 0151459 (27:1444)


Additional Information

A. Polishchuk
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97405
Email: apolish@math.uoregon.edu

DOI: https://doi.org/10.1090/S1056-3911-06-00431-0
Received by editor(s): July 14, 2005
Received by editor(s) in revised form: September 3, 2005
Published electronically: June 21, 2006
Additional Notes: Supported in part by NSF grant DMS-0302215

American Mathematical Society