Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



Pfaffian lines and vector bundles on Fano threefolds of genus $ 8$

Authors: Atanas Iliev and Laurent Manivel
Journal: J. Algebraic Geom. 16 (2007), 499-530
Published electronically: February 6, 2007
MathSciNet review: 2306278
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $ X$ be a general complex Fano threefold of genus $ 8$. We prove that the moduli space of rank two semistable sheaves on $ X$ with Chern numbers $ c_1=1$, $ c_2=6$ and $ c_3=0$ is isomorphic to the Fano surface $ F(X)$ of conics on $ X$. This surface is smooth and isomorphic to the Fano surface of lines in the orthogonal to $ X$ cubic threefold. Inside $ F(X)$, the nonlocally free sheaves are parameterized by a smooth curve of genus $ 26$ isomorphic to the base of the family of lines on $ \textrm{X}$.

References [Enhancements On Off] (What's this?)

  • [AR] Allan Adler and S. Ramanan, Moduli of abelian varieties, Lecture Notes in Mathematics, vol. 1644, Springer-Verlag, Berlin, 1996. MR 1621185
  • [AC] Enrique Arrondo and Laura Costa, Vector bundles on Fano 3-folds without intermediate cohomology, Comm. Algebra 28 (2000), no. 8, 3899–3911. MR 1767596, 10.1080/00927870008827064
  • [AF] E. Arrondo, D. Faenzi, Vector bundles with no intermediate cohomology on Fano threefolds of type $ V_{22}$, preprint (2004).
  • [A] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 0131423
  • [B1] Arnaud Beauville, Vector bundles on the cubic threefold, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000) Contemp. Math., vol. 312, Amer. Math. Soc., Providence, RI, 2002, pp. 71–86. MR 1941574, 10.1090/conm/312/04987
  • [B2] Arnaud Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786479, 10.1307/mmj/1030132707
  • [BD] Arnaud Beauville and Ron Donagi, La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703–706 (French, with English summary). MR 818549
  • [Bo] F. Bogomolov, Holomorphic tensors and vector bundles on projective varieties, Math. USSR, Izv. 13, 499-555 (1979).
  • [BGS] R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165–182. MR 877011, 10.1007/BF01405096
  • [CG] C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 0302652
  • [Dem] J.P. Demailly, Complex analytic and algebraic geometry, available at demailly/books.html
  • [D] Stéphane Druel, Espace des modules des faisceaux de rang 2 semi-stables de classes de Chern 𝑐₁=0,𝑐₂=2 et 𝑐₃=0 sur la cubique de 𝑃⁴, Internat. Math. Res. Notices 19 (2000), 985–1004 (French). MR 1792346, 10.1155/S1073792800000519
  • [F] D. Faenzi, Bundles on the Fano threefold $ V_5$, e-print: math.AG/0407293.
  • [Fa] G. Fano, Sulle varieta algebriche a tre dimensioni a curve-sezioni canoniche, Mem. Accad. Ital. 8, 23-64 (1937).
  • [Fu] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • [G] N. Gushel$ '$, Fano varieties of genus 8, Russ. Math. Surv. 38:1, 192-193 (1983); On Fano threefolds of genus 8, St. Petersbg. Math. J. 4:1, 115-129 (1993).
  • [GH] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • [H1] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [H2] Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. MR 597077, 10.1007/BF01467074
  • [HL] Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870
  • [IM1] A. Iliev and D. Markushevich, Quartic 3-fold: Pfaffians, vector bundles, and half-canonical curves, Michigan Math. J. 47 (2000), no. 2, 385–394. MR 1793633, 10.1307/mmj/1030132542
  • [IM2] A. Iliev and D. Markushevich, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Doc. Math. 5 (2000), 23–47 (electronic). MR 1739270
  • [IM3] Atanas Iliev and Dimitri Markushevich, Elliptic curves and rank-2 vector bundles on the prime Fano threefold of genus 7, Adv. Geom. 4 (2004), no. 3, 287–318. MR 2071808, 10.1515/advg.2004.018
  • [IM4] A. Iliev, D. Markushevich, Parametrization of Sing(Theta) for a Fano 3-fold of genus 7 by moduli of vector bundles, e-print: math.AG/0403122; to appear in J. Alg. Geom.
  • [IP] I. R. Shafarevich (ed.), Algebraic geometry. V, Encyclopaedia of Mathematical Sciences, vol. 47, Springer-Verlag, Berlin, 1999. Fano varieties; A translation of Algebraic geometry. 5 (Russian), Ross. Akad. Nauk, Vseross. Inst. Nauchn. i Tekhn. Inform., Moscow; Translation edited by A. N. Parshin and I. R. Shafarevich. MR 1668575
  • [Is] V. Iskovskikh, Birational automorphisms of three-dimensional algebraic varieties, J. Sov. Math. 13, 815-868 (1980).
  • [Kn] Horst Knörrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987), no. 1, 153–164. MR 877010, 10.1007/BF01405095
  • [L] Robert Lazarsfeld, Lectures on linear series, Complex algebraic geometry (Park City, UT, 1993) IAS/Park City Math. Ser., vol. 3, Amer. Math. Soc., Providence, RI, 1997, pp. 161–219. With the assistance of Guillermo Fernández del Busto. MR 1442523
  • [Ma] C. G. Madonna, ACM vector bundles on prime Fano threefolds and complete intersection Calabi-Yau threefolds, Rev. Roumaine Math. Pures Appl. 47 (2002), no. 2, 211–222 (2003). MR 1979043
  • [Man] Laurent Manivel, Théorèmes d’annulation pour les fibrés associés à un fibré ample, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 4, 515–565 (French). MR 1205883
  • [MMe] L. Manivel and E. Mezzetti, On linear spaces of skew-symmetric matrices of constant rank, Manuscripta Math. 117 (2005), no. 3, 319–331. MR 2154253, 10.1007/s00229-005-0560-7
  • [Mar] Masaki Maruyama, Boundedness of semistable sheaves of small ranks, Nagoya Math. J. 78 (1980), 65–94. MR 571438
  • [MM] Shigefumi Mori and Shigeru Mukai, Classification of Fano 3-folds with 𝐵₂≥2, Manuscripta Math. 36 (1981/82), no. 2, 147–162. MR 641971, 10.1007/BF01170131
    Shigefumi Mori and Shigeru Mukai, Erratum: “Classification of Fano 3-folds with 𝐵₂≥2” [Manuscripta Math. 36 (1981/82), no. 2, 147–162; MR0641971 (83f:14032)], Manuscripta Math. 110 (2003), no. 3, 407. MR 1969009, 10.1007/s00229-002-0336-2
  • [Mo] D. Morrison, The geometry of K3 surfaces, Scuola Math. Interuniv., Cortona, Italy, 71 p. (1988);
  • [MT1] D. Markushevich and A. S. Tikhomirov, The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom. 10 (2001), no. 1, 37–62. MR 1795549
  • [MT2] D. G. Markushevich and A. S. Tikhomirov, A parametrization of the theta divisor of the quartic double solid, Int. Math. Res. Not. 51 (2003), 2747–2778. MR 2016548, 10.1155/S1073792803212174
  • [Mu1] Shigeru Mukai, Symplectic structure of the moduli space of sheaves on an abelian or 𝐾3 surface, Invent. Math. 77 (1984), no. 1, 101–116. MR 751133, 10.1007/BF01389137
  • [Mu2] S. Mukai, On the moduli space of bundles on 𝐾3 surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413. MR 893604
  • [Mu3] Shigeru Mukai, Vector bundles on a 𝐾3 surface, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 495–502. MR 1957059
  • [Mu4] Shigeru Mukai, New developments in the theory of Fano threefolds: vector bundle method and moduli problems [translation of Sūgaku 47 (1995), no. 2, 125–144; MR1364825 (96m:14059)], Sugaku Expositions 15 (2002), no. 2, 125–150. Sugaku expositions. MR 1944132
  • [OSS] Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
  • [Ot] Giorgio Ottaviani, Some extensions of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. Pura Appl. (4) 155 (1989), 317–341. MR 1042842, 10.1007/BF01765948
  • [Pu] Pierre J. Puts, On some Fano-threefolds that are sections of Grassmannians, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 1, 77–90. MR 653456
  • [S] Edoardo Sernesi, Topics on families of projective schemes, Queen’s Papers in Pure and Applied Mathematics, vol. 73, Queen’s University, Kingston, ON, 1986. MR 869062
  • [Tih] A. S. Tikhomirov, New component of the moduli space 𝑀(2;0,3) of stable vector bundles on the double space 𝑃³ of index two, Acta Appl. Math. 75 (2003), no. 1-3, 271–279. Monodromy and differential equations (Moscow, 2001). MR 1975569, 10.1023/A:1022348314452
  • [V] Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456

Additional Information

Atanas Iliev
Affiliation: Institute of Mathematics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 8, 1113 Sofia, Bulgaria

Laurent Manivel
Affiliation: Institut Fourier, Laboratoire de Mathématiques, UMR 5582 (UJF-CNRS), BP 74, 38402 St Martin d’Hères Cedex, France

Received by editor(s): September 26, 2005
Received by editor(s) in revised form: November 9, 2005
Published electronically: February 6, 2007
Additional Notes: Partially supported by grant MI-1503/2005 of the Bulgarian Foundation for Scientific Research

Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2016 University Press, Inc.
AMS Website