Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Moduli spaces of $ p$-divisible groups


Author: Eva Viehmann
Journal: J. Algebraic Geom. 17 (2008), 341-374
DOI: https://doi.org/10.1090/S1056-3911-07-00480-8
Published electronically: December 5, 2007
MathSciNet review: 2369090
Full-text PDF

Abstract | References | Additional Information

Abstract: We study the global structure of moduli spaces of quasi-isogenies of $ p$-divisible groups introduced by Rapoport and Zink. We determine their dimensions and their sets of connected components and of irreducible components. If the isocrystals of the $ p$-divisible groups are simple, we compute the cohomology of the moduli space. As an application we determine which moduli spaces are smooth.


References [Enhancements On Off] (What's this?)

  • [F] L. Fargues, Cohomologie des espaces de modules de groupes $ p$-divisibles et correspondances de Langlands locales, in Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales, Astérisque 291 (2004), 1-199. MR 2074714 (2005g:11110b)
  • [GHKR] U. Görtz, Th. Haines, R. Kottwitz, D. Reuman, Dimensions of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. 39 (2006), 467-511. MR 2265676
  • [JO] A. J. de Jong, F. Oort, Purity of the stratification by Newton polygons, J. Amer. Math. Soc. 13 (2000), 209-241. MR 1703336 (2000m:14050)
  • [Ma] E. Mantovan, On certain unitary group Shimura varieties, in Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales, Astérisque 291 (2004), 201-331. MR 2074715 (2005g:11110c)
  • [Me] W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Math. 264, Springer, 1972. MR 0347836 (50:337)
  • [O1] F. Oort, Newton polygon strata in the moduli space of abelian varieties in Moduli of abelian varieties (Texel Island, 1999), 417-440, Progr. Math., 195, Birkhäuser, Basel, 2001. MR 1827028 (2002c:14069)
  • [O2] F. Oort, Minimal $ p$-divisible groups, Ann. of Math. (2) 161 (2005), 1021-1036. MR 2153405 (2006i:14042)
  • [O3] F. Oort, Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc. 17 (2004), no. 2, 267-296. MR 2051612 (2005c:14051)
  • [OZ] F. Oort, Th. Zink, Families of $ p$-divisible groups with constant Newton polygon, Documenta Math. 7 (2002), 183-201. MR 1938119 (2003m:14066)
  • [Ra] M. Rapoport, A guide to the reduction modulo $ p$ of Shimura varieties, Astérisque 298 (2005), 271-318. MR 2141705 (2006c:11071)
  • [RZ] M. Rapoport, Th. Zink, Period spaces for $ p$-divisible groups, Princeton Univ. Press, 1996. MR 1393439 (97f:14023)
  • [Vi] E. Viehmann, The dimension of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. 39 (2006), 513-526. MR 2265677
  • [Vo] I. Vollaard, The supersingular locus of the Shimura variety of $ GU(1,s)$, preprint, 2005, math.AG/0509067.
  • [Z] Th. Zink, The display of a formal $ p$-divisible group, in Cohomologies $ p$-adiques et applications arithmétiques, I, Astérisque 278 (2002), 127-248. MR 1922825 (2004b:14083)


Additional Information

Eva Viehmann
Affiliation: Mathematisches Institut der Universität Bonn, Beringstrasse 1, 53115 Bonn, Germany
Email: viehmann@math.uni-bonn.de

DOI: https://doi.org/10.1090/S1056-3911-07-00480-8
Received by editor(s): March 31, 2006
Received by editor(s) in revised form: February 8, 2007
Published electronically: December 5, 2007

American Mathematical Society