Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Chern classes of Schubert cells and varieties


Authors: Paolo Aluffi and Leonardo Constantin Mihalcea
Journal: J. Algebraic Geom. 18 (2009), 63-100
DOI: https://doi.org/10.1090/S1056-3911-08-00482-7
Published electronically: March 17, 2008
MathSciNet review: 2448279
Full-text PDF

Abstract | References | Additional Information

Abstract: We give explicit formulas for the Chern-Schwartz-MacPherson classes of all Schubert varieties in the Grassmannian of $ d$-planes in a vector space, and conjecture that these classes are effective. We prove this is the case for $ d\le 2$.


References [Enhancements On Off] (What's this?)

  • 1. Paolo Aluffi, Differential forms with logarithmic poles and Chern-Schwartz-MacPherson classes of singular varieties, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 7, 619-624. MR 1717120 (2001d:14008)
  • 2. -, Classes de Chern des variétés singulières, revisitées, C. R. Math. Acad. Sci. Paris 342 (2006), no. 6, 405-410. MR 2209219
  • 3. -, Limits of Chow groups, and a new construction of Chern-Schwartz-MacPherson classes, Pure Appl. Math. Q. 2 (2006), no. 4, 915-941, Robert MacPherson special issue, Part II. MR 2282409
  • 4. Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53-88, Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I. MR 0354697 (50:7174)
  • 5. William Fulton, Intersection theory, Springer-Verlag, Berlin, 1984. MR 732620 (85k:14004)
  • 6. Mark Goresky and William Pardon, Chern classes of automorphic vector bundles, Invent. Math. 147 (2002), no. 3, 561-612. MR 1893006 (2003g:32047)
  • 7. Christian Krattenthaler, Advanced determinant calculus, Sém. Lothar. Combin. 42 (1999), Art. B42q, 67 pp., The Andrews Festschrift (Maratea, 1998). MR 1701596 (2002i:05013)
  • 8. -, Advanced determinant calculus: A complement, Linear Algebra Appl. 411 (2005), 68-166. MR 2178686 (2006g:05022)
  • 9. Robert D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423-432. MR 0361141 (50:13587)
  • 10. Leonardo Constantin Mihalcea, Sums of binomial determinants, non-intersecting lattice paths and positivity of Chern-Schwartz-MacPherson classes, arXiv:math.CO/0702566.
  • 11. Adam Parusiński and Piotr Pragacz, Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors, J. Amer. Math. Soc. 8 (1995), no. 4, 793-817. MR 1311826 (96h:14001)
  • 12. Marie-Hélène Schwartz, Classes caractéristiques définies par une stratification d'une variété analytique complexe. I, C. R. Acad. Sci. Paris 260 (1965), 3262-3264. MR 0212842 (35:3707)
  • 13. -, Classes caractéristiques définies par une stratification d'une variété analytique complexe. II, C. R. Acad. Sci. Paris 260 (1965), 3535-3537. MR 0184254 (32:1727)
  • 14. Ravi Vakil, A geometric Littlewood-Richardson rule, Ann. of Math. (2) 164 (2006), no. 2, 371-421, Appendix A written with A. Knutson. MR 2247964 (2007f:05184)


Additional Information

Paolo Aluffi
Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306
Email: aluffi@math.fsu.edu

Leonardo Constantin Mihalcea
Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306
Address at time of publication: Department of Mathematics, Duke University, Durham, North Carolina 27708-0320
Email: lmihalce@math.duke.edu

DOI: https://doi.org/10.1090/S1056-3911-08-00482-7
Received by editor(s): October 7, 2006
Received by editor(s) in revised form: March 2, 2007
Published electronically: March 17, 2008

American Mathematical Society