Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

On the Casson Invariant Conjecture of Neumann-Wahl


Authors: András Némethi and Tomohiro Okuma
Journal: J. Algebraic Geom. 18 (2009), 135-149
DOI: https://doi.org/10.1090/S1056-3911-08-00493-1
Published electronically: March 4, 2008
MathSciNet review: 2448281
Full-text PDF

Abstract | References | Additional Information

Abstract: In this article we prove the Casson Invariant Conjecture of Neumann-Wahl for splice type surface singularities. Namely, for such an isolated complete intersection we show that the Casson invariant of the link is one-eighth the signature of the Milnor fiber, provided that the link is an integral homology sphere.


References [Enhancements On Off] (What's this?)

  • 1. A'Campo, N.: La fonction zêta d'une monodromie, Comment. Math. Helv., 50, 233-248, 1975. MR 0371889 (51:8106)
  • 2. Boyer, S. and Nicas, A.: Varieties of group representations and Casson's invariant for rational homology 3-spheres, Trans. AMS 322 (2), 507-522, 1990. MR 972701 (92a:57020)
  • 3. Collin, O.: Equivariant Casson invariant for knots and the Neumann-Wahl formula, Osaka J. Math., 37 (2000), 57-71. MR 1750270 (2001d:57014)
  • 4. Collin, O. and Saveliev, N.: A geometric proof of the Fintushel-Stern formula, Adv. in Math., 147 (1999), 304-314. MR 1734525 (2001b:57023)
  • 5. Collin, O. and Saveliev, N.: Equivariant Casson invariants via gauge theory, J. reine Angew. Math., 541 (2001), 143-169. MR 1876288 (2002k:57077)
  • 6. Durfee, A.: The Signature of Smoothings of Complex Surface Singularities, Math. Ann., 232, 85-98, 1978. MR 0466620 (57:6497)
  • 7. Eisenbud, D. and Neumann, W.: Three-Dimensional Link Theory and Invariants of Plane Curve Singularities, Ann. of Math. Studies 110, Princeton University Press, 1985. MR 817982 (87g:57007)
  • 8. Fintushel, R. and Stern, R.J.: Instanton homology of Seifert fibered homology 3-spheres, Proc. London Math. Soc. 61 (3), 109-137, 1991. MR 1051101 (91k:57029)
  • 9. Fukuhara, S.; Matsumoto, Y. and Sakamoto, K.: Casson's invariant of Seifert homology $ 3$-spheres Math. Ann., 287 (1990), no. 2, 275-285. MR 1054569 (91e:57027)
  • 10. Goto, S. and Watanabe, K.-i.: On graded rings, J. Math. Soc. Japan 30 (1978), no. 2, 179-213. MR 494707 (81m:13021)
  • 11. Laufer, H.B.: On $ \mu$ for surface singularities, Proceedings of Symposia in Pure Math., 30, 45-49, 1977. MR 0450287 (56:8583)
  • 12. Némethi, A. and Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities, Geometry and Topology, 6 (2002), 269-328. MR 1914570 (2003i:14048)
  • 13. Neumann, W.: Abelian covers of quasihomogeneous surface singularities, Proc. of Symposia in Pure Mathematics, 40, Part 2, 233-244, 1983. MR 713252 (85g:32018)
  • 14. Neumann, W.D.: A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Transactions of the AMS, 268 (1981), no. 2, 299-344. MR 632532 (84a:32015)
  • 15. Neumann, W.: Graph 3-manifolds, splice diagrams, singularities. Singularity theory, 787-817, World Sci. Publ., Hackensack, NJ, 2007. MR 2342940
  • 16. Neumann, W. and Wahl, J.: Casson invariant of links of singularities, Comment. Math. Helv., 65 (1991), 58-78. MR 1036128 (91c:57022)
  • 17. Neumann, W. and Wahl, J.: Universal abelian covers of surface singularities, Trends in singularities, 181-190, Trends Math. Birkhäuser, Basel, 2002. MR 1900786 (2003c:32028)
  • 18. Neumann, W. and Wahl, J.: Universal abelian covers of quotient-cusps, Math. Ann., 326 (2003), no. 1, 75-93. MR 1981612 (2004d:32039)
  • 19. Neumann, W. and Wahl, J.: Complex surface singularities with integral homology sphere links, Geometry and Topology, 9 (2005), 757-811. MR 2140992 (2006b:32042)
  • 20. Neumann, W. and Wahl, J.: Complete intersection singularities of splice type as universal abelian covers, Geometry and Topology, 9 (2005), 699-755. MR 2140991 (2006i:32037)
  • 21. Okuma, T: The geometric genus of splice-quotient singularities, arXiv:math.AG/ 0610464, to appear in Trans. AMS.
  • 22. Okuma, T: Universal abelian covers of certain surface singularities, Math. Ann., 334 (2006), 753-773. MR 2209255 (2007f:32036)
  • 23. Stevens, J.: Universal abelian covers of superisolated singularities, arXiv:math.AG/ 0601669.
  • 24. Tomari, M.: A $ p_g$-formula and elliptic singularities, Publ. R. I. M. S., Kyoto University, 21, 297-354, 1985. MR 785140 (86h:14029)
  • 25. Tomari, Masataka and Watanabe, Kei-ichi: Filtered rings, Filtered Blowing-Ups, Normal Two-Dimensional Singularities with ``Star-Shaped'' Resolution, Publ. R. I. M. S., Kyoto University, 25, 681-740, 1989. MR 1031224 (91a:14010)


Additional Information

András Némethi
Affiliation: Rényi Institute of Mathematics, Budapest, Hungary
Email: nemethi@renyi.hu

Tomohiro Okuma
Affiliation: Department of Education, Yamagata University, Yamagata 990-8560, Japan
Email: okuma@e.yamagata-u.ac.jp

DOI: https://doi.org/10.1090/S1056-3911-08-00493-1
Received by editor(s): October 31, 2006
Received by editor(s) in revised form: August 17, 2007
Published electronically: March 4, 2008
Additional Notes: The first author was partially supported by NSF grant DMS-0605323, a Marie Curie grant and OTKA grants. The second author was partially supported by the Grant-in-Aid for Young Scientists (B), The Ministry of Education, Culture, Sports, Science and Technology, Japan

American Mathematical Society