Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Differentiability of volumes of divisors and a problem of Teissier


Authors: Sébastien Boucksom, Charles Favre and Mattias Jonsson
Journal: J. Algebraic Geom. 18 (2009), 279-308
DOI: https://doi.org/10.1090/S1056-3911-08-00490-6
Published electronically: April 23, 2008
MathSciNet review: 2475816
Full-text PDF

Abstract | References | Additional Information

Abstract: We give an algebraic construction of the positive intersection products of pseudo-effective classes and use them to prove that the volume function on the Néron-Severi space of a projective variety is $ \mathcal{C}^1$-differentiable, expressing its differential as a positive intersection product. We also relate the differential to the restricted volumes. We then apply our differentiability result to prove an algebro-geometric version of the Diskant inequality in convex geometry, allowing us to characterize the equality case of the Khovanskii-Teissier inequalities for nef and big classes.


References [Enhancements On Off] (What's this?)

  • [A] Paolo Aluffi, Modification systems and integration in their Chow groups, Selecta Math. (N.S.) 11 (2005), no. 2, 155–202. MR 2183846, https://doi.org/10.1007/s00029-005-0004-y
  • [Bon] Bonnesen, T.,
    Les problèmes des isopérimètres et des isépiphanes.
    175 p. Paris, Gauthier-Villars (Collection de monographies sur la théorie des fonctions). (1929)
  • [Bou1] Sébastien Boucksom, On the volume of a line bundle, Internat. J. Math. 13 (2002), no. 10, 1043–1063. MR 1945706, https://doi.org/10.1142/S0129167X02001575
  • [Bou2] Sébastien Boucksom, Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 1, 45–76 (English, with English and French summaries). MR 2050205, https://doi.org/10.1016/j.ansens.2003.04.002
  • [BDPP] Boucksom, S., Demailly, J.-P., Paun, M., Peternell, T.,
    The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension.
    Preprint, 2004, arxiv.org/abs/math/0405285.
  • [BFJ1] Boucksom, S., Favre, C. and Jonsson M.,
    Degree growth of meromorphic surface maps.
    To appear in Duke Math. J.
  • [BFJ2] Boucksom, S., Favre, C. and Jonsson M.,
    Valuations and plurisubharmonic singularities.
    Preprint, 2007, arxiv.org/abs/math/0702487.
  • [C] Cantat, S., Sur les groupes de transformations birationnelles des surfaces. Preprint.
  • [DEL] Jean-Pierre Demailly, Lawrence Ein, and Robert Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137–156. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786484, https://doi.org/10.1307/mmj/1030132712
  • [D] Diskant, V.,
    A generalization of Bonnesen's inequalities.
    Soviet Math. Dokl., 14 (1973), 1728-1731.
  • [ELMNP1] L. Ein, R. Lazarsfeld, M. Mustaţǎ, M. Nakamaye, and M. Popa, Asymptotic invariants of line bundles, Pure Appl. Math. Q. 1 (2005), no. 2, Special Issue: In memory of Armand Borel., 379–403. MR 2194730, https://doi.org/10.4310/PAMQ.2005.v1.n2.a8
  • [ELMNP2] Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 6, 1701–1734 (English, with English and French summaries). MR 2282673
  • [ELMNP3] Ein, L., Lazarsfeld, R., Mustaţa, M, Nakamaye, M., Popa, M.,
    Restricted volumes and base loci of linear series.
    Preprint, 2006, arxiv.org/abs/math/0607221.
  • [FJ] Charles Favre and Mattias Jonsson, The valuative tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004. MR 2097722
  • [Fuj] Takao Fujita, Approximating Zariski decomposition of big line bundles, Kodai Math. J. 17 (1994), no. 1, 1–3. MR 1262949, https://doi.org/10.2996/kmj/1138039894
  • [Ful] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
  • [HM] Christopher D. Hacon and James McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), no. 1, 1–25. MR 2242631, https://doi.org/10.1007/s00222-006-0504-1
  • [I] V. A. Iskovskikh, 𝑏-divisors and Shokurov functional algebras, Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, 8–20 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 1(240) (2003), 4–15. MR 1993746
  • [L] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471
  • [M] Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
  • [N] Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
  • [O] Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties; Translated from the Japanese. MR 922894
  • [OP] Tadao Oda and Hye Sook Park, Linear Gale transforms and Gel′fand-Kapranov-Zelevinskij decompositions, Tohoku Math. J. (2) 43 (1991), no. 3, 375–399. MR 1117211, https://doi.org/10.2748/tmj/1178227461
  • [P] Yu. G. Prokhorov, On the Zariski decomposition problem, Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, 43–72 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 1(240) (2003), 37–65. MR 1993748
  • [Sch] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521
  • [Sh] V. V. Shokurov, Prelimiting flips, Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, 82–219; English transl., Proc. Steklov Inst. Math. 1(240) (2003), 75–213. MR 1993750
  • [Ta] Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), no. 3, 551–587. MR 2242627, https://doi.org/10.1007/s00222-006-0503-2
  • [Te1] Bernard Teissier, Du théorème de l’index de Hodge aux inégalités isopérimétriques, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 4, A287–A289 (French, with English summary). MR 524795
  • [Te2] B. Teissier, Bonnesen-type inequalities in algebraic geometry. I. Introduction to the problem, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 85–105. MR 645731
  • [Te3] Bernard Teissier, Monômes, volumes et multiplicités, Introduction à la théorie des singularités, II, Travaux en Cours, vol. 37, Hermann, Paris, 1988, pp. 127–141 (French). MR 1074593
  • [Va] Michel Vaquié, Valuations, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 539–590 (French). MR 1748635
  • [Vo] Claire Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, Cambridge, 2002. Translated from the French original by Leila Schneps. MR 1967689
  • [ZS] Zariski, O., Samuel, P.,
    Commutative algebra. Vol. 2.
    Graduate Texts in Mathematics, No. 29. Springer-Verlag, New York-Heidelberg-Berlin (1975)


Additional Information

Sébastien Boucksom
Affiliation: CNRS-Université Paris 7 Institut de Mathématiques, F-75251 Paris Cedex 05, France
Email: boucksom@math.jussieu.fr

Charles Favre
Affiliation: CNRS-Université Paris 7, Institut de Mathématiques, F-75251 Paris Cedex 05, France
Email: favre@math.jussieu.fr

Mattias Jonsson
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043 USA and Department of Mathematics, KTH, SE-100 44 Stockholm, Sweden
Email: mattiasj@umich.edu; mattiasj@kth.se

DOI: https://doi.org/10.1090/S1056-3911-08-00490-6
Received by editor(s): December 21, 2006
Received by editor(s) in revised form: April 16, 2007
Published electronically: April 23, 2008
Additional Notes: The second author was supported by the Japanese Society for the Promotion of Science. The third author was supported by NSF Grant No. DMS-0449465, the Swedish Science Council, and the Gustafsson Foundation.

American Mathematical Society