Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Non-archimedean analytification of algebraic spaces


Authors: Brian Conrad and Michael Temkin
Journal: J. Algebraic Geom. 18 (2009), 731-788
DOI: https://doi.org/10.1090/S1056-3911-09-00497-4
Published electronically: April 7, 2009
MathSciNet review: 2524597
Full-text PDF

Abstract | References | Additional Information

Abstract: We study quotient problems for étale equivalence relations in non-archimedean geometry, and we construct quotients for such equivalence relations in Berkovich's category of analytic spaces, assuming a separatedness hypothesis on the equivalence relation. We also give counterexamples that show the necessity of separatedness hypotheses, in contrast with the complex-analytic case. As an application, we construct analytifications for separated algebraic spaces over a non-archimedean field.


References [Enhancements On Off] (What's this?)

  • [A1] M. Artin, ``Algebraization of formal moduli: I'' in Global analysis $ ($papers in honor of K. Kodaira$ )$, Univ. of Tokyo Press, Tokyo (1969), pp. 21-71. MR 0260746 (41:5369)
  • [A2] M. Artin, Algebraization of formal moduli: II. Existence of modifications, Annals of Math., 91 no. 1 (1970), pp. 88-135. MR 0260747 (41:5370)
  • [AM] M. Atiyah, I. MacDonald, Introduction to commutative algebra, Addison-Wesley Publ. Co., Reading, 1969. MR 0242802 (39:4129)
  • [Ber1] V. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, 1990. MR 1070709 (91k:32038)
  • [Ber2] V. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math. IHES, 78 (1993), pp. 7-161. MR 1259429 (95c:14017)
  • [BGR] S. Bosch, U. Günzter, R. Remmert, Non-Archimedean analysis, Springer-Verlag, 1984. MR 746961 (86b:32031)
  • [BL1] S. Bosch, W. Lütkebohmert, Stable reduction and uniformization of abelian varieties I, Math. Annalen, 270 (1985), pp. 349-379. MR 774362 (86j:14040a)
  • [BL2] S. Bosch, W. Lütkebohmert, Formal and rigid geometry I, Math. Annalen, 295 (1993), pp. 291-317. MR 1202394 (94a:11090)
  • [BL2] S. Bosch, W. Lütkebohmert, Formal and rigid geometry II, Math. Annalen, 296 (1993), pp. 403-429. MR 1225983 (94e:11070)
  • [C1] B. Conrad, Irreducible components of rigid spaces, Annales Inst. Fourier, 49 (1999), pp. 473-541. MR 1697371 (2001c:14045)
  • [C2] B. Conrad, Relative ampleness in rigid-analytic geometry, Annales Inst. Fourier, 56 (2006), pp. 1049-1126. MR 2266885 (2007h:14029)
  • [C3] B. Conrad, Modular curves and rigid-analytic spaces, Pure and Applied Mathematics Quarterly, 2 (2006), pp. 29-110. MR 2217566 (2007a:14026)
  • [C4] B. Conrad, Moishezon spaces in rigid geometry, in preparation (2009).
  • [CT] B. Conrad, M. Temkin, Descent for non-archimedean analytic spaces, in preparation (2009).
  • [EGA] J. Dieudonné, A. Grothendieck, Éléments de géométrie algébrique, Publ. Math. IHES, 4, 8, 11, 17, 20, 24, 28, 32, (1960-1967).
  • [FK] K. Fujiwara, F. Kato, Foundations of rigid geometry, book in preparation.
  • [CAS] H. Grauert, R. Remmert, Coherent analytic sheaves, Springer-Verlag, Grundl. 265, 1984. MR 755331 (86a:32001)
  • [SGA1] A. Grothendieck, Revêtements Etales et Groupe Fondamental, Lecture Notes in Math. 224, Springer-Verlag, NY, 1971. MR 0354651 (50:7129)
  • [SGA3] A. Grothendieck, Schémas en groupes I, Springer Lecture Notes in Mathematics 151, Springer-Verlag, New York (1970). MR 0274458 (43:223a)
  • [K1] R. Kiehl, Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Inv. Math., 2 (1967) pp. 191-214. MR 0210948 (35:1833)
  • [K2] R. Kiehl, Analytische Familien affinoider Algebren, S.-B. Heidelberger Akd. Wiss. Math.-Nature. Kl. 1968 (1968), pp. 23-49. MR 0235160 (38:3472)
  • [K3] R. Kiehl, Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometrie, Journal für Mathematik, 234 (1969), pp. 89-98. MR 0243126 (39:4450)
  • [Kn] D. Knutson, Algebraic spaces, Lecture Notes in Math. 203, Springer-Verlag, New York, 1971. MR 0302647 (46:1791)
  • [Liu] Q. Liu, Un contre-exemple au ``critére cohomologique d'affinoidicité'', C.R. Acad. Sci. Paris Sér. I Math., 307 (1988), no. 2, pp. 83-86. MR 954265 (89k:32031)
  • [T1] M. Temkin, On local properties of non-Archimedean analytic spaces, Math. Ann., 318 (2000), pp. 585-607. MR 1800770 (2001m:14037)
  • [T2] M. Temkin, On local properties of non-Archimedean analytic spaces II, Israel Journal of Math., 140 (2004), pp. 1-27. MR 2054837 (2005c:14030)


Additional Information

Brian Conrad
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
Email: conrad@math.stanford.edu

Michael Temkin
Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Email: temkin@math.upenn.edu

DOI: https://doi.org/10.1090/S1056-3911-09-00497-4
Received by editor(s): June 22, 2007
Received by editor(s) in revised form: September 14, 2007
Published electronically: April 7, 2009
Additional Notes: The work of the first author was partially supported by NSF grant DMS-0600919, and both authors are grateful to the participants of the Arizona Winter School for helpful feedback on an earlier version of this paper. Also, the first author is very grateful to Columbia University for its generous hospitality during a sabbatical visit.

American Mathematical Society