Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Rational maps between moduli spaces of curves and Gieseker-Petri divisors


Author: Gavril Farkas
Journal: J. Algebraic Geom. 19 (2010), 243-284
DOI: https://doi.org/10.1090/S1056-3911-09-00510-4
Published electronically: June 2, 2009
MathSciNet review: 2580676
Full-text PDF

Abstract | References | Additional Information

Abstract: We study contractions of the moduli space of stable curves beyond the minimal model of $ \overline{\mathcal{M}}_{g'}$ by giving a complete enumerative description of the rational map between two moduli spaces of curves $ \overline{\mathcal{M}}_g \dashrightarrow\overline{\mathcal{M}}_{g'}$ which associates to a curve $ C$ of genus $ g$ its Brill-Noether locus of special divisors in the case this locus is a curve. As an application we construct many examples of moving effective divisors on $ \overline{\mathcal{M}}_g$ of small slope, which in turn can be used to show that various moduli space of curves with level structure are of general type. For low $ g'$ our calculation can be used to study the intersection theory of the moduli space of Prym varieties of dimension $ 5$.


References [Enhancements On Off] (What's this?)

  • [ACGH] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves, Grundlehren der mathematischen Wissenschaften 267 (1985), Springer Verlag. MR 770932 (86h:14019)
  • [AC] E. Arbarello and M. Cornalba, A few remarks about the variety of irreducible plane curves of given degree and genus, Annales Scient. École Normale Sup. 16 (1983), 467-488. MR 740079 (86a:14020)
  • [AC2] E. Arbarello and M. Cornalba, Footnotes to a paper of Beniamino Segre, Mathematische Annalen 256 (1981), 341-362. MR 626954 (83d:14016)
  • [BCF] E. Ballico, C. Casagrande and C. Fontanari, Moduli of Prym curves, Documenta Mathematica 9 (2004), 265-281. MR 2117416 (2006e:14031)
  • [B] A. Beauville, Prym varieties and the Schottky problem, Inventiones Math. 41 (1977), 146-196. MR 0572974 (58:27995)
  • [CHT] C. Ciliberto, J. Harris and M. Teixidor, On the endomorphisms of $ \mathrm{Jac}(W^ 1_d (C))$ when $ \rho=1$ and $ C$ has general moduli, in: Classification of irregular varieties, Springer LNM 1515 (1992), 41-67. MR 1180337 (93i:14023)
  • [Di] S. Diaz, Exceptional Weierstrass points and the divisor on moduli space that they define, Memoirs American Mathematical Society 327 (1985). MR 791679 (86j:14022)
  • [D] R. Donagi, The fibers of the Prym map, Contemporary Math. 136 (1992), 55-125, math.AG/9206008. MR 1188194 (94e:14037)
  • [DS] R. Donagi and R. Smith, The structure of the Prym map, Acta Mathematica 146 (1981), 25-102. MR 594627 (82k:14030b)
  • [EH1] D. Eisenbud and J. Harris, Limit linear series: basic theory, Inventiones Math. 85 (1986), 337-371. MR 846932 (87k:14024)
  • [EH2] D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus $ \geq 23$, Inventiones Math. 90 (1987), 359-387. MR 910206 (88g:14027)
  • [EH3] D. Eisenbud and J. Harris, A simple proof of the Gieseker-Petri theorem on special divisors, Inventiones Math. 74 (1983), 269-280. MR 723217 (85e:14039)
  • [Est] E. Esteves, Compactifying the relative Jacobian over families of reduced curves, Transactions American Mathematical Society, 353 (2001), 3045-3095. MR 1828599 (2003b:14036)
  • [F1] G. Farkas, Koszul divisors on moduli spaces of curves, math.AG/0607475, to appear in the American Journal of Mathematics 131 (2009).
  • [F2] G. Farkas, Gaussian maps, Gieseker-Petri loci and large theta-characteristics, J. reine angewandte Mathematik, 581 (2005), 151-173. MR 2132674 (2006e:14032)
  • [FL] G. Farkas and K. Ludwig, The Kodaira dimension of the moduli space of Prym varieties, Journal of European Math. Society (2009), to appear, arXiv:0804.4616
  • [FP] G. Farkas and M. Popa, Effective divisors on $ \overline{\mathcal{M}}_g$, curves on $ K3$ surfaces and the Slope Conjecture, J. Algebraic Geometry, 14 (2005), 241-267. MR 2123229 (2006a:14043)
  • [G] D. Gieseker, Stable curves and special divisors, Inventiones Math. 66 (1982), 251-275. MR 656623 (83i:14024)
  • [HL] D. Hyeon and Y. Lee, Log minimal model for the moduli space of stable curves of genus $ 3$, math.AG/07003093.
  • [HT] J. Harris and L. Tu, Chern numbers of kernel and cokernel bundles, Inventiones Math. 75 (1984), 467-475. MR 735336 (86j:14025)
  • [HMo] J. Harris and I. Morrison, Slopes of effective divisors on the moduli space of curves, Inventiones Math. 99 (1990), 321-355. MR 1031904 (91d:14009)
  • [HK] Y. Hu and S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348. MR 1786494 (2001i:14059)
  • [Mu] S. Mukai, Curves and symmetric spaces I, American Journal Math. 117 (1995), 1627-1644. MR 1363081 (96m:14040)
  • [PT] G. Pirola and M. Teixidor, Generic Torelli for $ W^r_d$, Mathematische Zeitschrift 209 (1992), 53-54. MR 1143212 (92m:14037)
  • [S] B. Segre, Sui moduli delle curve poligonali, e sopra un complemento al teorema di esistenza di Riemann, Mathematische Annalen 100 (1928), 537-552. MR 1512501
  • [T] M. Teixidor, The divisor of curves with a vanishing theta-null, Compositio Math. 66 (1988), 15-22. MR 937985 (89c:14040)
  • [Ta] S. L. Tan, On the slopes of the moduli spaces of curves, International Journal Math. 9 (1998), 119-127. MR 1612259 (99k:14042)
  • [W] J. Wahl, Gaussian maps on algebraic curves, J. Differential Geometry 32 (1990), 77-98. MR 1064866 (91h:14028)


Additional Information

Gavril Farkas
Affiliation: Humboldt-Universität zu Berlin, Institut für Mathematik, 10099 Berlin, Germany
Email: farkas@math.hu-berlin.de

DOI: https://doi.org/10.1090/S1056-3911-09-00510-4
Received by editor(s): September 19, 2007
Received by editor(s) in revised form: December 19, 2007
Published electronically: June 2, 2009
Additional Notes: Research was partially supported by an Alfred P. Sloan Fellowship, the NSF Grants DMS-0450670 and DMS-0500747 and a 2006 Texas Summer Research Assignment. Most of this paper was written while visiting the Institut Mittag-Leffler in Djursholm in the Spring of 2007. Support from the institute is gratefully acknowledged.

American Mathematical Society