Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Hilbert's theorem on positive ternary quartics: A refined analysis


Author: Claus Scheiderer
Journal: J. Algebraic Geom. 19 (2010), 285-333
DOI: https://doi.org/10.1090/S1056-3911-09-00538-4
Published electronically: July 28, 2009
MathSciNet review: 2580677
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $ X$ be an integral plane quartic curve over a field $ k$, let $ f$ be an equation for $ X$. We first consider representations $ (*)$ $ cf=p_1p_2-p_0^2$ (where $ c\in k^*$ and the $ p_i$ are quadratic forms), up to a natural notion of equivalence. Using the general theory of determinantal varieties we show that equivalence classes of such representations correspond to nontrivial globally generated torsion-free rank one sheaves on $ X$ with a self-duality which are not exceptional, and that the exceptional sheaves are in bijection with the $ k$-rational singular points of $ X$. For $ k=\mathbb{C}$, the number of representations $ (*)$ (up to equivalence) depends only on the singularities of $ X$, and is determined explicitly in each case. In the second part we focus on the case where $ k=\mathbb{R}$ and $ f$ is nonnegative. By a famous theorem of Hilbert, such $ f$ is a sum of three squares of quadratic forms. We use the Brauer group and Galois cohomology to relate identities $ (**)$ $ f=p_0^2+p_1^2+p_2^2$ to $ (*)$, and we determine the number of equivalence classes of representations $ (**)$ for each $ f$. Both in the complex and in the real definite case, our results are considerably more precise since they give the number of representations with any prescribed base locus.


References [Enhancements On Off] (What's this?)

  • [Be] A. Beauville: Determinantal hypersurfaces. Michigan Math. J. 48, 39-64 (2000). MR 1786479 (2002b:14060)
  • [Bo] N. Bourbaki: Algèbre commutative, Chapitre 10. Springer, Berlin, 2007.
  • [CC] G. Casnati, F. Catanese: Even sets of nodes are bundle symmetric. J. Differential Geom. 47, 237-256 (1997). MR 1601608 (99h:14044)
  • [Ca1] F. Catanese: Babbage's conjecture, contact of surfaces, symmetric determinantal varieties and applications. Invent. math. 63, 433-465 (1981). MR 620679 (83c:14026)
  • [Ca2] F. Catanese: Homological algebra and algebraic surfaces. In: Algebraic Geometry -- Santa Cruz 1995, Proc. Symp. Pure Math. 62.1, AMS, Providence, RI, 1997, pp. 3-56. MR 1492517 (98m:14039)
  • [CL] M.-D. Choi, T.-Y. Lam: An old question of Hilbert. In: Conf. Quadratic Forms, G. Orzech (ed.), Kingston, 1976, Queen's Papers Pure Appl. Math. 46, 1977, pp. 385-405. MR 0498375 (58:16503)
  • [Co] A. B. Coble: Algebraic Geometry and Theta Functions. Am. Math. Soc. Colloq. Publications 10 (1929). MR 0123958 (23:A1279)
  • [EN] J. A. Eagon, D. G. Northcott: Ideals defined by matrices and a certain complex associated with them. Proc. Royal Soc. London 269, 188-204 (1962). MR 0142592 (26:161)
  • [Ge] W.-D. Geyer: Ein algebraischer Beweis des Satzes von Weichold über reelle algebraische Funktionenkörper. In: Algebraische Zahlentheorie, Tagung Math. Forschungsinst. Oberwolfach 1964, H. Hasse, P. Roquette (eds.), Mannheim, 1966, pp. 83-98. MR 0229650 (37:5224)
  • [GK] G.-M. Greuel, H. Knörrer: Einfache Kurvensingularitäten und torsionsfreie Moduln. Math. Ann. 270, 417-425 (1985). MR 774367 (86d:14025)
  • [EGA] A. Grothendieck: Éléments de Géométrie Algébrique, I-IV. Publ. Math. IHES 4, 8, 11, 17, 20, 24, 28, 32, 1960-1967.
  • [Gu] D. A. Gudkov: On the topology of real projective algebraic varieties. Usp. Mat. Nauk 29 no. 4, 3-79 (1974); English translation in Russian Math. Surv. 29 no. 4, 1-79 (1974). MR 0399085 (53:2936)
  • [Hr] J. Harris: Theta-characteristics on algebraic curves. Trans. Am. Math. Soc. 271, 611-638 (1982). MR 654853 (83m:14022)
  • [Ha] R. Hartshorne: Algebraic Geometry. Grad. Texts Math. 52, Springer, New York, 1977. MR 0463157 (57:3116)
  • [He] O. Hesse: Über Determinanten und ihre Anwendung in der Geometrie, insbesondere auf Curven vierter Ordnung. J. reine angew. Math. 49, 243-264 (1855).
  • [H] D. Hilbert: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32 (1888), 342-350. MR 1510517
  • [Mi] J. S. Milne: Étale Cohomology. Princeton Univ. Press, Princeton, NJ, 1980. MR 559531 (81j:14002)
  • [PW] C. Pedrini, C. Weibel: Invariants of real curves. Rend. Sem. Mat. Univ. Politecn. Torino 49, 139-173 (1991). MR 1219265 (94f:14016)
  • [Pf] A. Pfister: On Hilbert's theorem about ternary quartics. In: Algebraic and arithmetic theory of quadratic forms, Contemp. Math. 344, AMS, Providence, RI, 2004, pp. 295-301. MR 2060205 (2005f:11058)
  • [Pi] J. Piontkowski: Theta-characteristics on singular curves. J. London Math. Soc. (2) 75, 479-494 (2007). MR 2340240 (2008g:14046)
  • [PR] V. Powers, B. Reznick: Notes towards a constructive proof of Hilbert's Theorem on ternary quartics. In: Quadratic Forms and Their Applications, Contemp. Math. 272 (2000), pp. 209-229. MR 1803369 (2001h:11049)
  • [PRSS] V. Powers, B. Reznick, C. Scheiderer, F. Sottile: A new approach to Hilbert's theorem on ternary quartics. C. R. Acad. Sci. Paris, Sér. I, 339, 617-620 (2004). MR 2103198 (2005i:11051)
  • [Re1] B. Reznick: Some concrete aspects of Hilbert's 17th problem. In: Real Algebraic Geometry and Ordered Structures (Baton Rouge, LA, 1996), Contemp. Math. 253, AMS, Providence, RI, 2000, pp. 251-272. MR 1747589 (2001i:11042)
  • [Re2] B. Reznick: On Hilbert's construction of positive polynomials. Preprint, 2007.
  • [Ru] W. Rudin: Sums of squares of polynomials. Am. Math. Monthly 107, 813-821 (2000). MR 1792413 (2002c:12003)
  • [Sch] W. Scharlau: Quadratic and Hermitian Forms. Grundl. math. Wiss. 270, Springer, Berlin, 1985. MR 770063 (86k:11022)
  • [Sw] R. G. Swan: Hilbert's theorem on positive ternary quartics. In: Quadratic Forms and Their Applications, Contemp. Math. 272, 287-293 (2000). MR 1803372 (2001k:11065)
  • [W] C. T. C. Wall: Is every quartic a conic of conics? Math. Proc. Camb. Phil. Soc. 109, 419-424 (1991). MR 1094742 (92c:14026)
  • [Wi] E. Witt: Zerlegung reeller algebraischer Funktionen in Quadrate, Schiefkörper über reellem Funktionenkörper. J. reine angew. Math. 171, 4-11 (1934).
  • [Y] Y. Yoshino: Maximal Cohen-Macaulay Modules over Cohen-Macaulay Rings. London Math. Soc. Lect. Notes Ser. 146, Cambridge Univ. Press, Cambridge, 1990. MR 1079937 (92b:13016)


Additional Information

Claus Scheiderer
Affiliation: Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany
Email: claus.scheiderer@uni-konstanz.de

DOI: https://doi.org/10.1090/S1056-3911-09-00538-4
Received by editor(s): November 13, 2007
Received by editor(s) in revised form: March 18, 2009
Published electronically: July 28, 2009
Dedicated: Dedicated to Jean-Louis Colliot-Thélène on the occasion of his 60th birthday

American Mathematical Society