Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Ekedahl-Oort strata contained in the supersingular locus and Deligne-Lusztig varieties


Author: Shushi Harashita
Journal: J. Algebraic Geom. 19 (2010), 419-438
DOI: https://doi.org/10.1090/S1056-3911-09-00519-0
Published electronically: August 17, 2009
MathSciNet review: 2629596
Full-text PDF

Abstract | References | Additional Information

Abstract: We study the moduli space of principally polarized abelian varieties over fields of positive characteristic. In this paper we describe certain unions of Ekedahl-Oort strata contained in the supersingular locus in terms of Deligne-Lusztig varieties. As a corollary we show that each Ekedahl-Oort stratum contained in the supersingular locus is reducible except possibly for small $ p$.


References [Enhancements On Off] (What's this?)

  • 1. C. Bonnafé and R. Rouquier: On the irreducibility of Deligne-Lusztig varieties. C. R. Math. Acad. Sci. Paris 343 (2006), no. 1, 37-39. MR 2241956 (2007a:14055)
  • 2. A. Borel: Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991. MR 1102012 (92d:20001)
  • 3. N. Bourbaki: Lie groups and Lie algebras. Chapters 4-6. Translated from the 1968 French original by Andrew Pressley. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. MR 1890629 (2003a:17001)
  • 4. R. W. Carter: Simple groups of Lie type. Pure and Applied Mathematics, A Wiley-Interscience Publication, (1972). MR 0407163 (53:10946)
  • 5. C.-L. Chai and F. Oort: Monodromy and irreducibility of leaves. 30 pages, preprint. See http://www.math.uu.nl/people/oort/.
  • 6. P. Deligne and G. Lusztig: Representations of reductive groups over finite fields. Ann. of Math. (2) 103 (1976), no. 1, 103-161. MR 0393266 (52:14076)
  • 7. M. Deuring: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, (1941), 197-272. MR 0005125 (3:104f)
  • 8. T. Ekedahl and G. van der Geer: Cycle classes of the E-O stratification on the moduli of abelian varieties. To appear in: Algebra, Arithmetic and Geometry Volume I: In Honor of Y. I. Manin Series: Progress in Mathematics, Vol. 269 Tschinkel, Yuri; Zarhin, Yuri G. (Eds.) 2008. MR 1827014 (2001j:14002)
  • 9. U. Görtz and C.-F. Yu: Supersingular Kottwitz-Rapoport strata and Deligne-Lusztig varieties. Preprint. arXiv: 0802.3260v1
  • 10. A. Grothendieck: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math. No. 28. MR 0217086 (36:178)
  • 11. S. Harashita: Ekedahl-Oort strata and the first Newton slope strata. J. Algebraic Geom. 16 (2007), 171-199. MR 2257323 (2007k:14043)
  • 12. M. Hoeve: Ekedahl-Oort strata in the supersingular locus. Preprint. arXiv: 0802.4012
  • 13. T. Ibukiyama, T. Katsura and F. Oort: Supersingular curves of genus two and class numbers. Compositio Math. 57 (1986), pp. 127-152. MR 827350 (87f:14026)
  • 14. J. Igusa: Class number of a definite quaternion with prime discriminant. Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 312-314. MR 0098728 (20:5183)
  • 15. A. J. de Jong: Finite locally free group schemes in characteristic $ p$ and Dieudonné modules. Invent. Math. 114 (1993), no. 1, 89-137. MR 1235021 (94j:14043)
  • 16. T. Katsura and F. Oort: Families of supersingular abelian surfaces. Compositio Math. 62 (1987), no. 2, 107-167. MR 898731 (88j:14053)
  • 17. K.-Z. Li: Classification of Supersingular Abelian Varieties. Math. Ann. 283 (1989), pp. 333-351. MR 980602 (89k:14033)
  • 18. K.-Z. Li and F. Oort: Moduli of Supersingular Abelian Varieties. Lecture Notes in Math. 1680 (1998).
  • 19. B. Moonen: Group schemes with additional structures and Weyl group cosets. In: Moduli of abelian varieties (Ed. C. Faber, G. van der Geer, F. Oort), Progr. Math., 195, Birkhäuser, Basel, 2001; pp. 255-298. MR 1827024 (2002c:14074)
  • 20. B. Moonen and T. Wedhorn: Discrete invariants of varieties in positive characteristic. Int. Math. Res. Not. 2004, no. 72, 3855-3903. MR 2104263 (2005k:14040)
  • 21. D. Mumford: Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5 Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London 1970. MR 0282985 (44:219)
  • 22. D. Mumford, J. Fogarty and F. Kirwan: Geometric invariant theory. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34. Springer-Verlag, Berlin, 1994. MR 1304906 (95m:14012)
  • 23. T. Oda: The first de Rham cohomology group and Dieudonné modules. Ann. Sci. École Norm. Sup. 4série, t.2 (1969), pp. 63-135. MR 0241435 (39:2775)
  • 24. A. Ogus: Supersingular $ K3$ crystals. Astérisque 64 (1979), pp. 3-86. MR 563467 (81e:14024)
  • 25. F. Oort: Subvarieties of moduli spaces. Invent. Math. 24 (1974), 95-119. MR 0424813 (54:12771)
  • 26. F. Oort: Which abelian surfaces are products of elliptic curves? Math. Ann. 214 (1975), 35-47. MR 0364264 (51:519)
  • 27. F. Oort: A stratification of a moduli space of abelian varieties. Progress in Mathematics, 195, pp. 345-416, Birkhäuser, Basel, 2001. MR 1827027 (2002b:14055)
  • 28. G. Prasad: Volumes of $ S$-arithmetic quotients of semi-simple groups. Publ. Math. Inst. HES, tome 69 (1989), pp. 91-114. MR 1019962 (91c:22023)
  • 29. T. Shioda: Supersingular $ K3$ surfaces. Lecture Notes in Math. 732, (1979), pp. 564-591. MR 555718 (82c:14030)
  • 30. I. Vollaard: The supersingular locus of the Shimura variety for $ GU(1,s)$. To appear in Canad. J. Math. arXiv:0509067v2
  • 31. I. Vollaard and T. Wedhorn: The supersingular locus of the Shimura variety of $ GU(1,n-1)$ II. Preprint. arXiv: 0804.1522v1


Additional Information

Shushi Harashita
Affiliation: Institute for the Physics and Mathematics of the Universe, The University of Tokyo, 5-1-5 Kashiwanoha Kashiwa-shi Chiba 277-8582 Japan
Email: harasita@ms.u-tokyo.ac.jp

DOI: https://doi.org/10.1090/S1056-3911-09-00519-0
Received by editor(s): March 10, 2008
Received by editor(s) in revised form: June 13, 2008
Published electronically: August 17, 2009
Additional Notes: This research is partially supported by JSPS Research Fellowship for Young Scientists.
Dedicated: Dedicated to Professor Tomoyoshi Ibukiyama on his 60th birthday

American Mathematical Society