Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Blow-analytic equivalence of two variable real analytic function germs


Authors: Satoshi Koike and Adam Parusinski
Journal: J. Algebraic Geom. 19 (2010), 439-472
DOI: https://doi.org/10.1090/S1056-3911-09-00527-X
Published electronically: December 1, 2009
MathSciNet review: 2629597
Full-text PDF

Abstract | References | Additional Information

Abstract: Blow-analytic equivalence is a notion for real analytic function germs, introduced by Tzee-Char Kuo in order to develop real analytic equisingularity theory. In this paper we give complete characterisations of blow-analytic equivalence in the two dimensional case, in terms of the real tree model for the arrangement of real parts of Newton-Puiseux roots and their Puiseux pairs, and in terms of minimal resolutions. These characterisations show that in the two dimensional case the blow-analytic equivalence is a natural analogue of topological equivalence of complex analytic function germs. Moreover, we show that in the two-dimensional case the blow-analytic equivalence can be made cascade, and hence satisfies several geometric properties. It preserves, for instance, the contact order of real analytic arcs.

In the general $ n$-dimensional case, we show that a singular real modification satisfies the arc-lifting property.


References [Enhancements On Off] (What's this?)

  • 1. O. M. Abderrahmane Yacoub, Polyhèdre de Newton et trivialité en famille, J. Math. Soc. Japan 54 (2002), 513-550. MR 1900955 (2003d:58064)
  • 2. O. M. Abderrahmane Yacoub, Weighted homogeneous polynomials and blow-analytic equivalence, in Singularity Theory and Its Applications, Advances Studies in Pure Mathematics 43, 2006, Mathematical Society of Japan, Tokyo, 333-345. MR 2325144 (2008g:58045)
  • 3. A. Beauville, Surfaces algébriques complexes, Astérisque 54 (1978). MR 0485887 (58:5686)
  • 4. W. Burau, Kennzeichung der Schlauchknoten, Abh. Math. Sem. Hamburg, 9, 1932, 125-133
  • 5. G. Fichou, Motivic invariants of arc-symmetric sets and blow-Nash equivalence, Comp. Math. 141 (2005), 655-688. MR 2135282 (2006b:14102)
  • 6. T. Fukui, E. Yoshinaga, The modified analytic trivialization of family of real analytic functions, Invent. math. 82 (1985), 467-477. MR 811547 (87a:58028)
  • 7. T. Fukui, Seeking invariants for blow-analytic equivalence, Compositio Math. 105 (1997), 95-107. MR 1436747 (98c:32009)
  • 8. T. Fukui, S. Koike, T.-C. Kuo, Blow-analytic equisingularities, properties, problems and progress, Real Analytic and Algebraic Singularities (T. Fukuda, T. Fukui, S. Izumiya and S. Koike, eds.), Pitman Research Notes in Mathematics Series, 381 (1998), pp. 8-29. MR 1607662 (99a:32051)
  • 9. T. Fukui, S. Koike, M. Shiota, Modified Nash triviality of a family of zero-sets of real polynomial mappings, Ann. Inst. Fourier 48 (1998), 1395-1440. MR 1662251 (99m:14112)
  • 10. T. Fukui, L. Paunescu, Modified analytic trivialization for weighted homogeneous function-germs, J. Math. Soc. Japan 52 (2000), 433-446. MR 1742795 (2001a:58060)
  • 11. T. Fukui, L. Paunescu, On Blow-analytic Equivalence, in ``Arc Spaces and Additive Invariants in Real Algebraic Geometry'', Proceedings of Winter School ``Real algebraic and Analytic Geometry and Motivic Integration'', Aussois 2003, Panoramas et Synthèses 24 (2008), SMF, 87-125. MR 2409690
  • 12. J.P. Henry, A. Parusiński, Invariants of bi-Lipschitz equivalence of real analytic functions, Banach Center Publications 65 (2004), Warszawa PWN, 67-75. MR 2104338 (2005h:32066)
  • 13. H. Hironaka, Introduction to real-analytic sets and real-analytic maps, Quaderni dei Gruppi di Ricerca Matematica del Consiglio Nazionale delle Ricerche, Istituto Matematico ``L. Tonelli'' dell'Università di Pisa (1973). MR 0477121 (57:16665)
  • 14. H. Hironaka, M. Lejeune-Jalabert, B. Teissier : Platificateur local en géométrie analytique et aplatissement local, Singularités à Cargèse, Astérisque 7 & 8 (1973), 441-463. MR 0409884 (53:13636)
  • 15. S. Izumi, S, Koike, T.-C. Kuo, Computations and Stability of the Fukui Invariant, Compositio Math. 130 (2002), 49-73. MR 1883691 (2003a:32050)
  • 16. M. Kobayashi, T.-C. Kuo, On Blow-analytic equivalence of embedded curve singularities, Real Analytic and Algebraic Singularities (T. Fukuda, T. Fukui, S. Izumiya and S. Koike, eds.), Pitman Research Notes in Mathematics Series, 381 (1998), pp. 30-37. MR 1607666 (99d:58028)
  • 17. S. Koike, On strong $ C^0$-equivalence of real analytic functions, J. Math. Soc. Japan 45 (1993), 313-320. MR 1206656 (93k:58023)
  • 18. S. Koike, A. Parusiński, Motivic-type invariants of blow-analytic equivalence, Ann. Inst. Fourier 53 (2003), 2061-2104. MR 2044168 (2005g:32039)
  • 19. S. Koike, A. Parusiński, Equivalence relations for two variable real analytic function germs, arXiv:0801.2650
  • 20. T.-C. Kuo, Une classification des singularités réells, C.R. Acad. Sci. Paris 288 (1979), 809-812. MR 535641 (80i:32034)
  • 21. T.-C. Kuo, The modified analytic trivialization of singularities, J. Math. Soc. Japan 32 (1980), 605-614. MR 589100 (82d:58012)
  • 22. T.-C. Kuo, On an O.D.E. problem in equisingularities, Annales Polonici Math. XXXXVIII (1980), 219-226.
  • 23. T.-C. Kuo, Y. C. Lu, On analytic function germs of complex variables, Topology 16 (1977), 299-310. MR 0460711 (57:704)
  • 24. T.-C. Kuo, J. Ward, A theorem on almost analytic equisingularities, J. Math. Soc. Japan 33 (1981), 471-484. MR 620284 (83c:32015)
  • 25. T.-C. Kuo, Some viewpoints on algebraic geometry and singularity theorem, Math. Chronicle 11 (1982), 67-80. MR 677452 (84k:58036)
  • 26. T.-C. Kuo, Equivalence of isolated complex singularities, Bull. of Inst. Math. Acad. Sinica 11 (1983), 415-432. MR 726988 (85m:32009)
  • 27. T.-C. Kuo, Sur le problème de l'equisingularité, Séminaire sur la Géométrie Algébrique Réelle, Publ. Math. de l'Université de Paris, VII (1984), pp. 119-122.
  • 28. T.-C. Kuo, On classification of real singularities, Invent. math. 82 (1985), 257-262. MR 809714 (87d:58025)
  • 29. K. Kurdyka, L. Paunescu, Arc-analytic roots of analytic functions are Lipschitz, Proc. Amer. Math. Soc. 132 (2004), 1693-1702. MR 2051130 (2005c:32012)
  • 30. A. Parusiński, A criterion for the topological equivalence of two variable complex analytic function germs, Proc. Japan Acad. Ser. A Math. Sci. Volume 84, Number 8 (2008), 147-150. MR 2457803
  • 31. M. Shiota, Equivalence of differentiable mappings and analytic mappings, Publ. Math. Inst. IHES 54 (1981), 37-122. MR 644558 (84k:58039)
  • 32. R. J. Walker, Algebraic Curves, Springer-Verlag, New York, Heidelberg, Berlin, 1950. MR 513824 (80c:14001)
  • 33. C.T.C. Wall, Singular Points of Plane Curves, London Mathematical Society, Student Texts 63, Cambridge University Press 2004. MR 2107253 (2005i:14031)
  • 34. O. Zariski, On the topology of algebroid singularities, Amer. Jour. Math. 54 (1932), 453-465. MR 1507926


Additional Information

Satoshi Koike
Affiliation: Department of Mathematics, Hyogo University of Teacher Education, 942-1 Shimokume, Kato, Hyogo 673-1494, Japan
Email: koike@hyogo-u.ac.jp

Adam Parusinski
Affiliation: Laboratoire Angevin de Recherche en Mathématiques, UMR 6093 du CNRS, Université d’Angers, 2, bd Lavoisier, 49045 Angers cedex, France
Address at time of publication: Laboratoire J. A. Dieudonné U.M.R. C.N.R.S. N 6621, Université de Nice Sophia-Antipolis, Parc Valrose 06108 Nice Cedex 02, France
Email: adam.parusinski@unice.fr

DOI: https://doi.org/10.1090/S1056-3911-09-00527-X
Received by editor(s): April 1, 2008
Received by editor(s) in revised form: December 19, 2008
Published electronically: December 1, 2009
Additional Notes: This research was partially supported by the Grant-in-Aid for Scientific Research (No. 18540084) of the Ministry of Education, Science and Culture of Japan.

American Mathematical Society