Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

New topological recursion relations


Authors: Xiaobo Liu and Rahul Pandharipande
Journal: J. Algebraic Geom. 20 (2011), 479-494
DOI: https://doi.org/10.1090/S1056-3911-2010-00559-0
Published electronically: June 9, 2010
MathSciNet review: 2786663
Full-text PDF

Abstract | References | Additional Information

Abstract: Simple boundary expressions for the $ k^{th}$ power of the cotangent line class $ \psi_1$ on $ \overline{M}_{g,1}$ are found for $ k\geq 2g$. The method is by virtual localization on the moduli space of maps to $ \mathbb{P}^1$. As a consequence, nontrivial tautological classes in the kernel of the boundary push-forward map

$\displaystyle \iota_*:A^*( \overline{M}_{g,2}) \rightarrow A^*(\overline{M}_{g+1})$

are constructed. The geometry of genus $ g+1$ curves, then provides universal equations in genus $ g$ Gromov-Witten theory. As an application, we prove all the Gromov-Witten identities conjectured recently by K. Liu and H. Xu.


References [Enhancements On Off] (What's this?)

  • 1. D. Arcara and F. Sato, Recursive formula for $ \psi^g-\lambda_1\psi^{g-1} + \cdots + (-1)^g\lambda_g$ in $ \overline{M}_{g,1}$, Proc. Amer. Math. Soc. 137 (2009), no. 12, 4077-4081. MR 2538568
  • 2. P. Belorousski and R. Pandharipande, A descendent relation in genus 2, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 171-191. MR 1765541 (2001g:14044)
  • 3. C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), 173-199. MR 1728879 (2000m:14057)
  • 4. C. Faber and R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring. With an appendix by D. Zagier. Michigan Math. J. 48 (2000), 215-252. MR 1786488 (2002e:14041)
  • 5. C. Faber and R. Pandharipande, Relative maps and tautological classes, JEMS 7 (2005), 13-49. MR 2120989 (2005m:14046)
  • 6. B. Fantechi and R. Pandharipande, Stable maps and branch divisors, Compositio Math. 130 (2002), 345-364. MR 1887119 (2003a:14039)
  • 7. E. Getzler, Intersection theory on $ \overline{M}_{1,4}$ and elliptic Gromov-Witten invariants, JAMS 10 (1997), 973-998. MR 1451505 (98f:14018)
  • 8. E. Getzler, Topological recursion relations in genus 2, in Integrable systems and algebraic geometry (Kobe/Kyoto 1997), World Scientific Publishing: River Edge, NJ 1998, 73-106. MR 1672112 (2000b:14028)
  • 9. T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), 487-518. MR 1666787 (2000h:14005)
  • 10. E. Ionel, Topological recursive relations in $ H^{2g}(M_{g,n})$, Invent. Math. 148 (2002), 627-658. MR 1908062 (2003d:14065)
  • 11. S. Keel, Intersection theory of moduli space of $ n$-pointed curves of genus 0, Trans. Amer. Math. Soc. 330 (1992), 545-574. MR 1034665 (92f:14003)
  • 12. T. Kimura and X. Liu, A genus 3 topological recursion relation, Comm. Math. Phys. 262 (2006), 645-661. MR 2202306 (2006i:14060)
  • 13. K. Liu and H. Xu, A proof of the Faber intersection number conjecture, arXiv: 0803.2204. MR 2577471
  • 14. K. Liu and H. Xu, The n-point functions for intersection numbers on moduli spaces of curves, math.AG/0701319.
  • 15. X. Liu, Quantum product on the big phase space and Virasoro conjecture, Advances in Mathematics 169 (2002), 313-375. MR 1926225 (2003j:14075)
  • 16. X. Liu, On certain vanishing identities for Gromov-Witten invariants, arXiv:0805. 0800.
  • 17. D. Maulik, Gromov-Witten theory of $ A_n$-resolutions, arXiv:0802.2681.


Additional Information

Xiaobo Liu
Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email: xliu3@nd.edu

Rahul Pandharipande
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
Email: rahulp@math.princeton.edu

DOI: https://doi.org/10.1090/S1056-3911-2010-00559-0
Received by editor(s): September 10, 2008
Received by editor(s) in revised form: February 24, 2010
Published electronically: June 9, 2010
Additional Notes: The first author was partially supported by NSF grants DMS-0505835 and DMS-0905227. The second author was partially supported by NSF grant DMS-0500187.

American Mathematical Society