New topological recursion relations

Authors:
Xiaobo Liu and Rahul Pandharipande

Journal:
J. Algebraic Geom. **20** (2011), 479-494

DOI:
https://doi.org/10.1090/S1056-3911-2010-00559-0

Published electronically:
June 9, 2010

MathSciNet review:
2786663

Full-text PDF

Abstract | References | Additional Information

Abstract: Simple boundary expressions for the power of the cotangent line class on are found for . The method is by virtual localization on the moduli space of maps to . As a consequence, nontrivial tautological classes in the kernel of the boundary push-forward map

**1.**D. Arcara and F. Sato,*Recursive formula for in*, Proc. Amer. Math. Soc. 137 (2009), no. 12, 4077-4081. MR**2538568****2.**P. Belorousski and R. Pandharipande,*A descendent relation in genus 2*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**29**(2000), 171-191. MR**1765541 (2001g:14044)****3.**C. Faber and R. Pandharipande,*Hodge integrals and Gromov-Witten theory*, Invent. Math. 139 (2000), 173-199. MR**1728879 (2000m:14057)****4.**C. Faber and R. Pandharipande,*Logarithmic series and Hodge integrals in the tautological ring*. With an appendix by D. Zagier. Michigan Math. J.**48**(2000), 215-252. MR**1786488 (2002e:14041)****5.**C. Faber and R. Pandharipande,*Relative maps and tautological classes*, JEMS**7**(2005), 13-49. MR**2120989 (2005m:14046)****6.**B. Fantechi and R. Pandharipande,*Stable maps and branch divisors*, Compositio Math.**130**(2002), 345-364. MR**1887119 (2003a:14039)****7.**E. Getzler,*Intersection theory on and elliptic Gromov-Witten invariants*, JAMS**10**(1997), 973-998. MR**1451505 (98f:14018)****8.**E. Getzler,*Topological recursion relations in genus 2*, in*Integrable systems and algebraic geometry (Kobe/Kyoto 1997)*, World Scientific Publishing: River Edge, NJ 1998, 73-106. MR**1672112 (2000b:14028)****9.**T. Graber and R. Pandharipande,*Localization of virtual classes*, Invent. Math.**135**(1999), 487-518. MR**1666787 (2000h:14005)****10.**E. Ionel,*Topological recursive relations in*, Invent. Math.**148**(2002), 627-658. MR**1908062 (2003d:14065)****11.**S. Keel,*Intersection theory of moduli space of -pointed curves of genus 0*, Trans. Amer. Math. Soc.**330**(1992), 545-574. MR**1034665 (92f:14003)****12.**T. Kimura and X. Liu,*A genus 3 topological recursion relation*, Comm. Math. Phys.**262**(2006), 645-661. MR**2202306 (2006i:14060)****13.**K. Liu and H. Xu,*A proof of the Faber intersection number conjecture*, arXiv: 0803.2204. MR**2577471****14.**K. Liu and H. Xu,*The n-point functions for intersection numbers on moduli spaces of curves*, math.AG/0701319.**15.**X. Liu,*Quantum product on the big phase space and Virasoro conjecture*, Advances in Mathematics**169**(2002), 313-375. MR**1926225 (2003j:14075)****16.**X. Liu,*On certain vanishing identities for Gromov-Witten invariants*, arXiv:0805. 0800.**17.**D. Maulik,*Gromov-Witten theory of -resolutions*, arXiv:0802.2681.

Additional Information

**Xiaobo Liu**

Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556

Email:
xliu3@nd.edu

**Rahul Pandharipande**

Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000

Email:
rahulp@math.princeton.edu

DOI:
https://doi.org/10.1090/S1056-3911-2010-00559-0

Received by editor(s):
September 10, 2008

Received by editor(s) in revised form:
February 24, 2010

Published electronically:
June 9, 2010

Additional Notes:
The first author was partially supported by NSF grants DMS-0505835 and DMS-0905227. The second author was partially supported by NSF grant DMS-0500187.