Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Motives and representability of algebraic cycles on threefolds over a field


Authors: Sergey Gorchinskiy and Vladimir Guletskiĭ
Journal: J. Algebraic Geom. 21 (2012), 347-373
DOI: https://doi.org/10.1090/S1056-3911-2011-00548-1
Published electronically: May 31, 2011
Corrigendum: J. Algebraic Geom. 22 (2013), 795-796
MathSciNet review: 2877438
Full-text PDF

Abstract | References | Additional Information

Abstract: We study algebraic cycles on threefolds and finite-dimensionality of their motives with coefficients in $ \mathbb{Q}$. We decompose the motive of a non-singular projective threefold $ X$ with representable algebraic part of $ CH_0(X)$ into Lefschetz motives and the Picard motive of a certain abelian variety, isogenous to the Griffiths' intermediate Jacobian $ J^2(X)$ when the ground field is $ \mathbb{C}$. In particular, it implies motivic finite-dimensionality of Fano threefolds over a field. We also prove representability of zero-cycles on several classes of threefolds fibred by surfaces with algebraic $ H^2$. This gives new examples of three-dimensional varieties whose motives are finite-dimensional.


References [Enhancements On Off] (What's this?)

  • 1. J. Ayoub, The motivic vanishing cycles and the conservation conjecture, London Math. Soc. Lecture Notes Ser., vol. 343, Cambridge Univ. Press, Cambridge, 2007, pp. 3-54. MR 2385299 (2008m:14013)
  • 2. S. Bloch, Lectures on algebraic cycles, Duke University Math. Series IV, 1980. MR 558224 (82e:14012)
  • 3. S. Bloch, An example in the theory of algebraic cycles, Lecture Notes in Math., vol. 551, Springer, Berlin, 1976, pp. 1-29. MR 0480504 (58:665)
  • 4. S. Bloch, Torsion algebraic cycles and a theorem of Roitman, Compositio Math. 39 (1979), no. 1, 107-127. MR 539002 (80k:14012)
  • 5. S. Bloch and J.P. Murre, On the Chow group of certain types of Fano threefolds, Compositio Math. 39 (1979), no. 1, 46-105. MR 539001 (80m:14025)
  • 6. S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, American Journal of Mathematics 105 (1983), no. 5, 1235-1253. MR 714776 (85i:14002)
  • 7. A. Corti and M. Hanamura, Motivic decomposition and intersection Chow groups, Duke Math. J. 103 (2000), 459-522. MR 1763656 (2001f:14039)
  • 8. Ch. Deninger and J. Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201-219. MR 1133323 (92m:14055)
  • 9. W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620 (85k:14004)
  • 10. V. Guletskiĭ, On the continuous part of codimension $ 2$ algebraic cycles on three-dimensional varieties, Sb. Math. 200 (2009), no. 3, 325-338. MR 2529143
  • 11. V. Guletskiĭ and C. Pedrini, The Chow motive of the Godeaux surface, Algebraic Geometry, de Gruyter, Berlin, 2002, pp. 179-195. MR 1954064 (2004b:14006)
  • 12. V. Guletskiĭ and C. Pedrini, Finite-dimensional motives and the conjectures of Beilinson and Murre, $ K$-Theory 30 (2003), no. 3, 243-263. MR 2064241 (2005f:14020)
  • 13. U. Jannsen, Motivic sheaves and filtrations on Chow groups, Proc. Sympos. Pure Math. vol. 55, part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 245-302. MR 1265533 (95c:14006)
  • 14. B. Kahn, J.P. Murre, and C. Pedrini, On the transcendental part of the motive of a surface, London Math. Soc. Lecture Notes Ser., vol. 344, Cambridge Univ. Press, Cambridge, 2004, pp. 143-202. MR 2187153 (2009c:14010)
  • 15. S.-I. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), no. 1, 173-201. MR 2107443 (2005j:14007)
  • 16. J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, 1996. MR 1440180 (98c:14001)
  • 17. K. Künnemann, On the Chow motive of an abelian scheme, Proc. Sympos. Pure Math. vol. 55, part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 189-205. MR 1265530 (95d:14009)
  • 18. V. Kulikov, Degeneration of K3 surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1977), no. 5, 957-989. MR 0506296 (58:22087b)
  • 19. A. S. Merkurjev and A. A. Suslin, $ K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 21 (1983), no. 2, 307-340.
  • 20. D. Morrison, Semistable degenerations of Enriques' and hyperelliptic surfaces, Duke Math. J. 48 (1981), no. 1, 197-249. MR 610184 (82m:14020)
  • 21. D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, no. 5, published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1970. MR 0282985 (44:219)
  • 22. J. Murre, On the motive of an algebraic surface, J. Reine Angew. Math. 409 (1990), 190-204. MR 1061525 (91g:14003)
  • 23. J. Murre, Fano varieties and algebraic cycles, The Fano Conference, Univ. Torino, Turin, 2004, pp. 51-68. MR 2112567 (2005i:14053)
  • 24. W. Raskind, Abelian class field theory of arithmetic schemes, Proc. Sympos. Pure Math. vol. 58, part 1, Amer. Math. Soc., Providence, RI, 1995, 85-187. MR 1327282 (96b:11089)
  • 25. A. Scholl, Classical motives, Proc. Sympos. Pure Math. vol. 55, part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 163-187. MR 1265529 (95b:11060)


Additional Information

Sergey Gorchinskiy
Affiliation: Steklov Mathematical Institute, Gubkina str. 8, 119991, Moscow, Russia
Email: gorchins@mi.ras.ru

Vladimir Guletskiĭ
Affiliation: Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL, England, United Kingdom
Email: vladimir.guletskii@liverpool.ac.uk

DOI: https://doi.org/10.1090/S1056-3911-2011-00548-1
Received by editor(s): July 3, 2009
Received by editor(s) in revised form: September 21, 2009
Published electronically: May 31, 2011
Additional Notes: The first author was partially supported by the grants RFBR 08-01-00095, NSh-1987.2008.1 and MK-297.2009.1.

American Mathematical Society