Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Jumping of the nef cone for Fano varieties


Author: Burt Totaro
Journal: J. Algebraic Geom. 21 (2012), 375-396
DOI: https://doi.org/10.1090/S1056-3911-2011-00557-2
Published electronically: June 29, 2011
MathSciNet review: 2877439
Full-text PDF

Abstract | References | Additional Information

Abstract: We construct $ \textbf{Q}$-factorial terminal Fano varieties, starting in dimension 4, whose nef cone jumps when the variety is deformed. It follows that de Fernex and Hacon's results on deformations of 3-dimensional Fanos are optimal. The examples are based on the existence of high-dimensional flips which deform to isomorphisms, generalizing the Mukai flop.

We also improve earlier results on deformations of Fano varieties. Toric Fano varieties which are smooth in codimension 2 and $ \textbf{Q}$-factorial in codimension 3 are rigid. The divisor class group is deformation-invariant for klt Fanos which are smooth in codimension 2 and $ \textbf{Q}$-factorial in codimension 3. The Cox ring deforms in a flat family under deformation of a terminal Fano which is $ \textbf{Q}$-factorial in codimension 3.

A side result which seems to be new is that the divisor class group of a klt Fano variety maps isomorphically to ordinary homology.


References [Enhancements On Off] (What's this?)

  • 1. K. Altmann. Minkowski sums and homogeneous deformations of toric varieties. Tohoku Math. J. 47 (1995), 151-184. MR 1329519 (96f:14063)
  • 2. V. Batyrev. Toric degenerations of Fano varieties and constructing mirror manifolds. The Fano conference (Torino, 2002), ed. A. Collino, 109-122. Univ. Torino (2004). MR 2112571 (2006b:14070)
  • 3. F. Bien and M. Brion. Automorphisms and local rigidity of regular varieties. Compositio Math. 104 (1996), 1-26. MR 1420707 (97h:14034)
  • 4. C. Birkar, P. Cascini, C. Hacon, and J. McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc. 23 (2010), 405-468.
  • 5. T. de Fernex and C. Hacon. Deformations of canonical pairs and Fano varieties. J. Reine Angew. Math. 651 (2011), 97-126. MR 2774312
  • 6. V. Danilov. The geometry of toric varieties. Russian Math. Surveys 33 (1978), 97-154. MR 495499 (80g:14001)
  • 7. P. Deligne. Théorie de Hodge II. Publ. Math. IHES 40 (1971), 5-58. MR 0498551 (58:16653a)
  • 8. I. Dolgachev. Weighted projective spaces. Group actions and vector fields, LNM 956, 34-71. Springer (1982). MR 704986 (85g:14060)
  • 9. O. Fujino. Multiplication maps and vanishing theorems for toric varieties. Math. Z. 257 (2007), 631-641. MR 2328817 (2008g:14092)
  • 10. O. Fujino. Introduction to the log minimal model program for log canonical pairs. arXiv:0907.1506v1
  • 11. P. Griffith. Approximate liftings in local algebra and a theorem of Grothendieck. J. Pure Appl. Algebra 196 (2005), 185-202. MR 2110522 (2005k:13016)
  • 12. A. Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I. Publ. Math. IHES 11 (1961), 167 pp. MR 0217085 (36:177c)
  • 13. A. Grothendieck. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). Soc. Math. de France (2005). MR 2171939 (2006f:14004)
  • 14. Y. Hu and S. Keel. Mori dream spaces and GIT. Michigan Math. J. 48 (2000), 331-348. MR 1786494 (2001i:14059)
  • 15. D. Huybrechts. Compact hyperkähler manifolds: basic results. Invent. Math. 135 (1999), 63-113. MR 1664696 (2000a:32039)
  • 16. Y. Kawamata. On the extension problem of pluricanonical forms. Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), ed. P. Pragacz, 193-207. AMS (1999). MR 1718145 (2000i:14053)
  • 17. J. Kollár et al. Flips and abundance for algebraic threefolds. Astérisque 211 (1992).
  • 18. J. Kollár. Singularities of pairs. Algebraic geometry (Santa Cruz, 1995), 221-287, Proc. Symp. Pure Math. 62, Part 1, AMS (1997). MR 1492525 (99m:14033)
  • 19. J. Kollár. Exercises in the birational geometry of algebraic varieties. arXiv:0809.2579v2 MR 921705 (88g:14001)
  • 20. J. Kollár and S. Mori. Classification of three-dimensional flips. J. Amer. Math. Soc. 5 (1992), 533-703. MR 1149195 (93i:14015)
  • 21. J. Kollár and S. Mori. Birational geometry of algebraic varieties. Cambridge (1998). MR 1658959 (2000b:14018)
  • 22. J. Milne. Étale cohomology. Princeton (1980). MR 559531 (81j:14002)
  • 23. S. Mukai. Symplectic structure of the moduli space of sheaves on an abelian or K3 surface. Invent. Math. 77 (1984), 101-116. MR 751133 (85j:14016)
  • 24. M. Mustaţă. Vanishing theorems on toric varieties. Tohoku Math. J. 54 (2002), 451-470. MR 1916637 (2003e:14013)
  • 25. Y. Namikawa. Projectivity criterion of Moishezon spaces and density of projective symplectic varieties. Internat. J. Math. 13 (2002), 125-135. MR 1891205 (2003b:32025)
  • 26. Y. Namikawa and J. Steenbrink. Global smoothing of Calabi-Yau threefolds. Invent. Math. 122 (1995), 403-419. MR 1358982 (96m:14056)
  • 27. M. Reid. Decomposition of toric morphisms. Arithmetic and geometry, v. 2, ed. M. Artin and J. Tate, 395-418. Birkhäuser (1983). MR 717617 (85e:14071)
  • 28. E. Sernesi. Deformations of algebraic schemes. Springer (2006). MR 2247603 (2008e:14011)
  • 29. Y.-T. Siu. Extension of twisted pluricanonical sections. Complex geometry (Göttingen, 2000), 223-277. Springer (2002). MR 1922108 (2003j:32027a)
  • 30. J. Wiśniewski. On deformation of nef values. Duke Math. J. 64 (1991), 325-332. MR 1136378 (93g:14012)
  • 31. J. Wiśniewski. Rigidity of Mori cone for Fano manifolds. Bull. LMS 41 (2009), 779-781. MR 2557458


Additional Information

Burt Totaro
Affiliation: DPMMS, Wilberforce Road, Cambridge CB3 0WB, England
Email: b.totaro@dpmms.cam.ac.uk

DOI: https://doi.org/10.1090/S1056-3911-2011-00557-2
Received by editor(s): July 16, 2009
Received by editor(s) in revised form: January 8, 2010
Published electronically: June 29, 2011

American Mathematical Society