Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Transcendental lattice of an extremal elliptic surface


Author: Alex Degtyarev
Journal: J. Algebraic Geom. 21 (2012), 413-444
DOI: https://doi.org/10.1090/S1056-3911-2011-00563-8
Published electronically: June 27, 2011
MathSciNet review: 2914799
Full-text PDF

Abstract | References | Additional Information

Abstract: We develop an algorithm computing the transcendental lattice and the Mordell-Weil group of an extremal elliptic surface. As an example, we compute the lattices of four exponentially large series of surfaces.


References [Enhancements On Off] (What's this?)

  • 1. K. Arima, I. Shimada, Zariski-van Kampen method and transcendental lattices of certain singular $ K3$ surfaces, Tokyo J. Math. 32, no. 1 (2009), 201-227. MR 2541164 (2010i:14066)
  • 2. F. Beukers, H. Montanus, Explicit calculation of elliptic fibrations of $ K3$-surfaces and their Belyi-maps, Number theory and polynomials, London Math. Soc. Lecture Note Ser. 352, Cambridge Univ. Press, Cambridge, (2008), 33-51. MR 2428514 (2009j:14011)
  • 3. A. Degtyarev, Zariski $ k$-plets via dessins d'enfants, Comment. Math. Helv. 84, no. 3, (2009), 639-671. MR 2507257 (2010f:14028)
  • 4. R. Friedman, J. W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer-Verlag, Berlin-New York, (1994). MR 1288304 (95m:57046)
  • 5. E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), 255-260. MR 1506962
  • 6. K. Kodaira, On compact analytic surfaces, II-III, Annals of Math., 77-78 (1963), 563-626, 1-40. MR 0184257 (32:1730)
  • 7. V. V. Nikulin, Integer quadratic forms and some of their geometrical applications, Izv. Akad. Nauk SSSR, Ser. Mat 43 (1979), 111-177, Russian, English transl. in Math. USSR-Izv. 14 (1980), 103-167. MR 525944 (80j:10031)
  • 8. M. Nori, On certain elliptic surfaces with maximal Picard number, Topology 24 (1985), no. 2, 175-186. MR 793183 (86m:14022)
  • 9. T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59. MR 0429918 (55:2927)
  • 10. T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul 39 (1990), no. 2, 211-240. MR 1081832 (91m:14056)


Additional Information

Alex Degtyarev
Affiliation: Department of Mathematics, Bilkent University, 06800 Ankara, Turkey
Email: degt@fen.bilkent.edu.tr

DOI: https://doi.org/10.1090/S1056-3911-2011-00563-8
Received by editor(s): July 10, 2009
Received by editor(s) in revised form: September 29, 2009, and December 31, 2009
Published electronically: June 27, 2011

American Mathematical Society