Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

On a conjecture of Beltrametti and Sommese


Author: Andreas Höring
Journal: J. Algebraic Geom. 21 (2012), 721-751
DOI: https://doi.org/10.1090/S1056-3911-2011-00573-0
Published electronically: December 20, 2011
MathSciNet review: 2957694
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $ X$ be a projective manifold of dimension $ n$. Beltrametti and
Sommese conjectured that if $ A$ is an ample divisor such that $ K_X+\linebreak (n-1)A$ is nef, then $ K_X+(n-1)A$ has non-zero global sections. We prove a weak version of this conjecture in arbitrary dimension. In dimension three, we prove the stronger non-vanishing conjecture of Ambro, Ionescu and Kawamata and give an application to Seshadri constants.


References [Enhancements On Off] (What's this?)

  • [Amb99] F. Ambro.
    Ladders on Fano varieties.
    J. Math. Sci. (New York), 94(1):1126-1135, 1999.
    Algebraic geometry, 9. MR 1703912 (2000e:14067)
  • [And95] Marco Andreatta.
    Some remarks on the study of good contractions.
    Manuscripta Math., 87(3):359-367, 1995. MR 1340353 (96i:14017)
  • [BCHM06] Caucher Birkar, Paolo Cascini, Christopher Hacon, and James McKernan.
    Existence of minimal models for varieties of log general type.
    arXiv, 2006. MR 2601039
  • [BDPP04] Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell.
    The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension.
    arxiv preprint, 0405285, 2004, to appear in J. Algebraic Geom. MR 2144160
  • [BH10] Amaël Broustet and Andreas Höring.
    Effective non-vanishing conjectures for projective threefolds.
    Advances in Geometry 10, no. 4, (2010), 737-746. MR 2733964 (2011j:14007)
  • [BM01] Fedor A. Bogomolov and Michael L. McQuillan.
    Rational curves on foliated varieties.
    Prépublications de l'IHES, pages 1-29, February 2001.
  • [BP08] Bo Berndtsson and Mihai Păun.
    A Bergman kernel proof of the Kawamata subadjunction theorem.
    arXiv, 0804.3884, 2008.
  • [Bro09] Amaël Broustet.
    Non-annulation effective et positivité locale des fibrés en droites amples adjoints.
    Math. Ann., 343(4):727-755, 2009. MR 2471598
  • [BS95] Mauro C. Beltrametti and Andrew J. Sommese.
    The adjunction theory of complex projective varieties, volume 16 of de Gruyter Expositions in Mathematics.
    Walter de Gruyter & Co., Berlin, 1995. MR 1318687 (96f:14004)
  • [Cam92] F. Campana.
    Connexité rationnelle des variétés de Fano.
    Ann. Sci. École Norm. Sup. (4), 25(5):539-545, 1992. MR 1191735 (93k:14050)
  • [Cam04] Frédéric Campana.
    Orbifolds, special varieties and classification theory.
    Ann. Inst. Fourier (Grenoble), 54(3):499-630, 2004. MR 2097416 (2006c:14013)
  • [CCZ05] Jungkai Alfred Chen, Meng Chen, and De-Qi Zhang.
    A non-vanishing theorem for $ {\mathbb{Q}}$-divisors on surfaces.
    J. Algebra, 293(2):363-384, 2005. MR 2172344 (2006g:14014)
  • [Cet93] Open problems.
    In Geometry of complex projective varieties (Cetraro, 1990), volume 9 of Sem. Conf., pages 321-325. Mediterranean, Rende, 1993. MR 1225603
  • [Deb01] Olivier Debarre.
    Higher-dimensional algebraic geometry.
    Universitext. Springer-Verlag, New York, 2001. MR 1841091 (2002g:14001)
  • [Fuj87] Takao Fujita.
    On polarized manifolds whose adjoint bundles are not semipositive.
    In Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages 167-178. North-Holland, Amsterdam, 1987. MR 946238 (89d:14006)
  • [Fuj89] Takao Fujita.
    Remarks on quasi-polarized varieties.
    Nagoya Math. J., 115:105-123, 1989. MR 1018086 (90i:14045)
  • [Fuk05] Yoshiaki Fukuma.
    A lower bound for the second sectional geometric genus of polarized manifolds.
    Adv. Geom., 5(3):431-454, 2005. MR 2154835 (2006g:14015)
  • [Fuk06] Yoshiaki Fukuma.
    On a conjecture of Beltrametti-Sommese for polarized 3-folds.
    Internat. J. Math., 17(7):761-789, 2006. MR 2253143 (2007e:14008)
  • [Fuk07] Yoshiaki Fukuma.
    On the dimension of global sections of adjoint bundles for polarized 3-folds and 4-folds.
    J. Pure Appl. Algebra, 211(3):609-621, 2007. MR 2344218 (2008f:14014)
  • [Ful84] William Fulton.
    Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3).
    Springer-Verlag, Berlin, 1984. MR 732620 (85k:14004)
  • [GHS03] Tom Graber, Joe Harris, and Jason Starr.
    Families of rationally connected varieties.
    J. Amer. Math. Soc., 16(1):57-67 (electronic), 2003. MR 1937199 (2003m:14081)
  • [Har77] Robin Hartshorne.
    Algebraic geometry.
    Springer-Verlag, New York, 1977.
    Graduate Texts in Mathematics, No. 52. MR 0463157 (57:3116)
  • [IF00] A. R. Iano-Fletcher.
    Working with weighted complete intersections.
    In Explicit birational geometry of 3-folds, volume 281 of London Math. Soc. Lecture Note Ser., pages 101-173. Cambridge Univ. Press, Cambridge, 2000. MR 1798982 (2001k:14089)
  • [Ion86] Paltin Ionescu.
    Generalized adjunction and applications.
    Math. Proc. Cambridge Philos. Soc., 99(3):457-472, 1986. MR 830359 (87e:14031)
  • [Kaw86] Yujiro Kawamata.
    On the plurigenera of minimal algebraic $ 3$-folds with $ K \sim 0$.
    Math. Ann., 275(4):539-546, 1986. MR 859328 (88c:14049)
  • [Kaw00] Yujiro Kawamata.
    On effective non-vanishing and base-point-freeness.
    Asian J. Math., 4(1):173-181, 2000.
    Kodaira's issue. MR 1802918 (2002b:14010)
  • [KM98] János Kollár and Shigefumi Mori.
    Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics.
    Cambridge University Press, Cambridge, 1998.
    With the collaboration of C. H. Clemens and A. Corti. MR 1658959 (2000b:14018)
  • [KMM92] Janos Kollár, Yoichi Miyaoka, and Shigefumi Mori.
    Rational connectedness and boundedness of Fano manifolds.
    J. Diff. Geom. 36, pages 765-769, 1992. MR 1189503 (94g:14021)
  • [KSCT07] Stefan Kebekus, Luis Solá Conde, and Matei Toma.
    Rationally connected foliations after Bogomolov and McQuillan.
    J. Algebraic Geom., 16(1):65-81, 2007. MR 2257320 (2007m:14047)
  • [Laz04] Robert Lazarsfeld.
    Positivity in algebraic geometry. II, volume 49 of Ergebnisse der Mathematik und ihrer Grenzgebiete.
    Springer-Verlag, Berlin, 2004.
    Positivity for vector bundles, and multiplier ideals. MR 2095472 (2005k:14001b)
  • [LM97] Steven Shin-Yi Lu and Yoichi Miyaoka.
    Bounding codimension-one subvarieties and a general inequality between Chern numbers.
    Amer. J. Math., 119(3):487-502, 1997. MR 1448213 (98d:14008)
  • [Miy87] Yoichi Miyaoka.
    The Chern classes and Kodaira dimension of a minimal variety.
    In Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages 449-476. North-Holland, Amsterdam, 1987. MR 946247 (89k:14022)
  • [MKe04] R. Miyaoka and M. Kotani (eds.).
    Mathematics in the 21st Century, Unscaled Peaks of Geometry.
    Nihon Hy$ \tilde o$ronsha, 2004.
  • [MP97] Yoichi Miyaoka and Thomas Peternell.
    Geometry of higher-dimensional algebraic varieties, volume 26 of DMV Seminar.
    Birkhäuser Verlag, Basel, 1997. MR 1468476 (98g:14001)
  • [MR82] V. B. Mehta and A. Ramanathan.
    Semistable sheaves on projective varieties and their restriction to curves.
    Math. Ann., 258(3):213-224, 1981/82. MR 649194 (83f:14013)
  • [Muk81] Shigeru Mukai.
    Duality between $ D(X)$ and $ D(\hat X)$ with its application to Picard sheaves.
    Nagoya Math. J., 81:153-175, 1981. MR 607081 (82f:14036)
  • [Rei80] Miles Reid.
    Canonical $ 3$-folds.
    In Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pages 273-310. Sijthoff & Noordhoff, Alphen aan den Rijn, 1980. MR 605348 (82i:14025)
  • [Rei87] Miles Reid.
    Young person's guide to canonical singularities.
    In Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), volume 46 of Proc. Sympos. Pure Math., pages 345-414. Amer. Math. Soc., Providence, RI, 1987. MR 927963 (89b:14016)
  • [Uta92] Flips and abundance for algebraic threefolds.
    Société Mathématique de France, Paris, 1992.
    Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992). MR 1225842 (94f:14013)
  • [Vie95] Eckart Viehweg.
    Quasi-projective moduli for polarized manifolds.
    Springer Verlag, 1995. MR 1368632 (97j:14001)
  • [Vie01] Eckart Viehweg.
    Positivity of direct image sheaves and applications to families of higher dimensional manifolds.
    In School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), volume 6 of ICTP Lect. Notes, pages 249-284. Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001. MR 1919460 (2003f:14024)
  • [Xie05] Qihong Xie.
    On pseudo-effectivity of the second Chern classes for terminal threefolds.
    Asian J. Math., 9(1):121-132, 2005. MR 2150695 (2006e:14009)
  • [Xie09] Qihong Xie.
    A note on the effective non-vanishing conjecture.
    Proc. Amer. Math. Soc., 137(1):61-63, 2009. MR 2439425 (2009f:14028)


Additional Information

Andreas Höring
Affiliation: Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu, Equipe de Topologie et Géométrie Algébrique, 175, rue du Chevaleret, 75013 Paris, France
Email: hoering@math.jussieu.fr

DOI: https://doi.org/10.1090/S1056-3911-2011-00573-0
Received by editor(s): January 20, 2010
Received by editor(s) in revised form: May 29, 2010
Published electronically: December 20, 2011

American Mathematical Society