Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal


Author: Claire Voisin
Journal: J. Algebraic Geom. 22 (2013), 141-174
DOI: https://doi.org/10.1090/S1056-3911-2012-00597-9
Published electronically: May 23, 2012
MathSciNet review: 2993050
Full-text PDF

Abstract | References | Additional Information

Abstract: Given a smooth projective $ n$-fold $ Y$, with $ H^{3,0}(Y)=0$, the Abel-Jacobi map induces a morphism from each smooth variety parameterizing codimension $ 2$-cycles in $ Y$ to the intermediate Jacobian $ J(Y)$, which is an abelian variety. Assuming $ n=3$, we study in this paper the existence of families of $ 1$-cycles in $ Y$ for which this induced morphism is surjective with rationally connected general fiber, and various applications of this property. When $ Y$ itself is rationally connected with trivial Brauer group, we relate this property to the existence of an integral cohomological decomposition of the diagonal of $ Y$. We also study this property for cubic threefolds, completing the work of Iliev-Markushevich-Tikhomirov. We then conclude that the Hodge conjecture holds for degree $ 4$ integral Hodge classes on fibrations into cubic threefolds over curves, with some restriction on singular fibers.


References [Enhancements On Off] (What's this?)

  • 1. A. Beauville. Les singularités du diviseur Theta de la jacobienne intermédiaire de l'hypersurface cubique dans $ \mathbb{P}^4$, in Algebraic threefolds (Proc. Varenna 1981), LN 947, 190-208; Springer-Verlag (1982). MR 672617 (84c:14030)
  • 2. S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér., IV. Sér. 7, 181-201 (1974). MR 0412191 (54:318)
  • 3. S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. of Math. 105 (1983), 1235-1253. MR 714776 (85i:14002)
  • 4. A-M. Castravet. Rational families of vector bundles on curves, International Journal of Mathematics, Vol. 15, No. 1 (2004), 13-45. MR 2039210 (2005i:14038)
  • 5. H. Clemens, P. Griffiths. The intermediate Jacobian of the cubic Threefold, Ann. of Math. 95 (1972), 281-356. MR 0302652 (46:1796)
  • 6. J.-L. Colliot-Thélène, M. Ojanguren. Variétés unirationnelles non rationnelles: au-delà de l'exemple d'Artin et Mumford, Invent. math. 97 (1989), no. 1, 141-158. MR 999316 (90m:14012)
  • 7. J.-L. Colliot-Thélène, C. Voisin. Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. Journal, Volume 161, Number 5, 735-801 (2012).
  • 8. A. Conte, J. Murre. The Hodge conjecture for fourfolds admitting a covering by rational curves, Math. Ann. 238, 461-513 (1978). MR 510310 (80a:14018)
  • 9. H. Esnault, E. Viehweg. Deligne-Beilinson cohomology, in Beilinson's Conjectures on Special Values of L-Functions, Editors M. Rapaport, P. Schneider and N. Schappacher, Perspect. Math., Vol. 4, Academic Press, Boston, MA, 1988, 43-91. MR 944991 (89k:14008)
  • 10. W. Fulton. Intersection Theory, Ergebnisse der Math. und ihrer Grenzgebiete 3 Folge, Band 2, Springer (1984). MR 732620 (85k:14004)
  • 11. T. Graber, J. Harris, B. Mazur, J. Starr. Rational connectivity and sections of families over curves, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 671-692. MR 2195256 (2006j:14044)
  • 12. T. Graber, J. Harris, J. Starr. Families of rationally connected varieties. J. Amer. Math. Soc., 16(1), 57-67 (2003). MR 1937199 (2003m:14081)
  • 13. P. Griffiths. On the periods of certain rational integrals, I, II, Ann. of Math. 90 (1969), 460-541. MR 0260733 (41:5357)
  • 14. A.Grothendieck. Cohomologie locale des faisceaus coherents et Theoremes de Lefschetz locaux and globale (SGA 2), Advanced studies in Pure Mathematics, North-Holland, Amsterdam (1968).
  • 15. A. Grothendieck, Hodge's general conjecture is false for trivial reasons, Topology 8 (1969), 299-303. MR 0252404 (40:5624)
  • 16. J. Harris, M. Roth and J. Starr, Curves of small degree on cubic threefolds, Rocky Mountain J. Math. 35 (2005), no. 3, 761-817. MR 2150309 (2007a:14011)
  • 17. J. Harris, M. Roth and J. Starr, Abel-Jacobi maps associated to smooth cubic threefolds, arXiv:math/0202080.
  • 18. A. Hogadi and C. Xu, Degenerations of rationally connected varieties, Trans. Amer. Math. Soc. 361, 7, 3931-3949 (2009). MR 2491906 (2010i:14091)
  • 19. A. Iliev and D. Markushevich, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree $ 14$, Documenta Mathematica, 5, 23-47 (2000). MR 1739270 (2000m:14042)
  • 20. J. Kollár. Trento examples, in Classification of irregular varieties, edited by E. Ballico, F. Catanese, C. Ciliberto, Lecture Notes in Math. 1515, Springer (1990), p. 134. MR 1180332 (93d:14005)
  • 21. J. Kollár, Y. Miyaoka and S. Mori, Rationally connected varieties, Journal of Algebraic Geometry 1, 429-448 (1992). MR 1158625 (93i:14014)
  • 22. D. Markushevich and A. Tikhomirov, The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geometry 10 (2001), 37-62. MR 1795549 (2001j:14055)
  • 23. D. Mumford. Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195-204. MR 0249428 (40:2673)
  • 24. J. P. Murre, Applications of algebraic $ K$-theory to the theory of algebraic cycles, in Proc. Conf. Algebraic Geometry, Sitjes 1983, LNM 1124 (1985), 216-261, Springer-Verlag. MR 805336 (87a:14006)
  • 25. M. Reid. The intersection of two or more quadrics, Ph.D. thesis 1972, available at www.maths.warwick.ac.uk/~miles/3folds/qu.pdf.
  • 26. C. Soulé and C. Voisin, Torsion cohomology classes and algebraic cycles on complex projective manifolds. Adv. Math. 198 (2005), no. 1, 107-127. MR 2183252 (2006i:14006)
  • 27. V. Voevodsky. On motivic cohomology with $ \mathbb{Z}/l$-coefficients, Annals of Math. (2) 174 (2011), no. 1, 401-438. MR 2811603
  • 28. C. Voisin, On integral Hodge classes on uniruled and Calabi-Yau threefolds, in Moduli Spaces and Arithmetic Geometry, Advanced Studies in Pure Mathematics 45, 2006, pp. 43-73. MR 2306166 (2008f:14057)
  • 29. C. Voisin, Some aspects of the Hodge conjecture, Japan. J. Math. 2, 261-296 (2007). MR 2342587 (2008g:14012)
  • 30. C. Voisin. Hodge theory and Complex Algebraic Geometry I and II, Cambridge Studies in advanced Mathematics 76 and 77, Cambridge University Press 2002, 2003. MR 1967689 (2004d:32020); MR 1997577 (2005c:32024b)
  • 31. S. Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34, 199-209 (1977). MR 0453741 (56:12001)


Additional Information

Claire Voisin
Affiliation: Institut de mathématiques de Jussieu, 175 rue due Chevaleret, 75013 Paris, France
Email: voisin@math.jussieu.fr

DOI: https://doi.org/10.1090/S1056-3911-2012-00597-9
Received by editor(s): April 17, 2010
Received by editor(s) in revised form: February 1, 2011
Published electronically: May 23, 2012
Dedicated: This paper is dedicated to the memory of Eckart Viehweg

American Mathematical Society