Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Intersection numbers for normal functions


Author: C. Herbert Clemens
Journal: J. Algebraic Geom. 22 (2013), 565-573
DOI: https://doi.org/10.1090/S1056-3911-2012-00582-7
Published electronically: December 19, 2012
MathSciNet review: 3048545
Full-text PDF

Abstract | References | Additional Information

Abstract: The purpose of this note is to simplify and generalize a formula of M. Green and P. Griffiths for the intersection number of two normal functions in complex algebraic geometry.


References [Enhancements On Off] (What's this?)

  • [C] Clemens, H. ``Degeneration of Kähler manifolds.'' Duke Math. Journal 44(1977), 215-290. MR 0444662 (56:3012)
  • [D] Deligne, P. ``Théorème de Lefschetz et Critères de Dégénéresence de Suites Spectrales.'' Publ. Math. IHES 35(1968), 259-278. MR 0244265 (39:5582)
  • [GG] Green, M., Griffiths, P. ``Algebraic cycles and singularities of normal functions.'' EAGER Conf. on Algebraic Cycles and Motives in honor of J. Murre, 30 August-3 September, 2004. Cambridge Univ. Press (2007), 220-278. MR 2385303 (2009b:14013)
  • [GK] van der Geer, G., Kouvidakis, A. ``The rank-one limit of the Fourier-Mukai transform.'' Documenta Mathematica 15 (2010), 747-763. MR 2735987 (2012a:14015)
  • [S] Schnell, C. ``Complex analytic Néron models for arbitrary families of intermediate Jacobians.'' Inventiones Math. 188 (2012), 1-81. MR 2897692


Additional Information

C. Herbert Clemens
Affiliation: Department of Mathematics, Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210-1174
Email: clemens@math.ohio-state.edu

DOI: https://doi.org/10.1090/S1056-3911-2012-00582-7
Received by editor(s): October 5, 2010
Received by editor(s) in revised form: January 15, 2011
Published electronically: December 19, 2012

American Mathematical Society