Abundance theorem for numerically trivial log canonical divisors of semi-log canonical pairs

Author:
Yoshinori Gongyo

Journal:
J. Algebraic Geom. **22** (2013), 549-564

DOI:
https://doi.org/10.1090/S1056-3911-2012-00593-1

Published electronically:
November 14, 2012

MathSciNet review:
3048544

Full-text PDF

Abstract | References | Additional Information

Abstract: We prove the abundance theorem for numerically trivial log canonical divisors of log canonical pairs and semi-log canonical pairs.

**[AFKM]**D. Abramovich, L. L. Y. Fong, J. Kollár and J. Kernan, Semi log canonical surface, Flip and Abundance for algebraic threefolds, Astérisque 211 (1992), 139-154.**[A]**F. Ambro, The moduli -divisor of an lc-trivial fibration, Compositio. Math. 141 (2005), no. 2, 385-403. MR**2134273 (2006d:14015)****[B1]**C. Birkar, On existence of log minimal models, Compositio Mathematica 146 (2010), 919-928. MR**2660678****[B2]**-, On existence of log minimal models II, J. Reine Angew Math. 658 (2011), 99-113. MR**2831514****[BCHM]**C. Birkar, P. Cascini, C. D. Hacon and J. Kernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468. MR**2601039 (2011f:14023)****[CKP]**F. Campana, V. Koziarz and M. P un, Numerical character of the effectivity of adjoint line bundles, preprint, arXiv:1004.0584, to appear in Ann. Inst. Fourier.**[CPT]**F. Campana and T. Peternell, Geometric stability of the cotangent bundle and the universal cover of a projective manifold, With an appendix by Matei Toma. Bull. Soc. Math. France 139 (2011), no. 1, 41-74. MR**2815027 (2012e:14031)****[CR]**C. W Curtis and I. Reiner,*Representation theory of finite groups and associative algebras*, Reprint of the 1962 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1988. MR**1013113 (90g:16001)****[Fj1]**O. Fujino, Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000), no. 3, 513-532. MR**1756108 (2001c:14032)****[Fj2]**-, The indices of log canonical singularities, Amer. J. Math. 123 (2001), no. 2, 229-253. MR**1828222 (2002c:14003)****[Fj3]**-, Base point free theorems-saturation, b-divisors, and canonical bundle formula-, math.AG/0508554.**[Fj4]**-, On Kawamata's theorem,*Classification of Algebraic Varieties*, 305-315, EMS Ser. of Congr. Rep., Eur. Math. Soc., Zürich, 2010.**[Fj5]**-, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727-789. MR**2832805 (2012h:14031)****[Fk1]**S. Fukuda, On numerically effective log canonical divisors, Int. J. Math. Math. Sci. 30 (2002), no. 9, 521-531. MR**1918126 (2003e:14010)****[Fk2]**-, An elementary semi-ampleness result for log canonical divisors, preprint, arXiv:1003.1388.**[G]**Y. Gongyo, On weak Fano varieties with log canonical singularities, preprint, arXiv:0911.0974, to appear in J. Reine Angew. Math.**[Ka1]**Y. Kawamata, Characterization of abelian varieties, Compositio Math. 43 (1981), no. 2, 253-276. MR**622451 (83j:14029)****[Ka2]**-, Pluricanonical systems on minimal algebraic varieties, Inv. Math. 79 (1985), no. 3, 567-588. MR**0782236 (87h:14005)****[Ka3]**-, Abundance theorem for minimal threefolds. Invent. Math. 108 (1992), no. 2, 229-246. MR**1161091 (93f:14012)****[Ka4]**-, On the abundance theorem in the case of , preprint, arXiv:1002.2682.**[KaMM]**Y. Kawamata, K, Matsuda and K, Matsuki,*Introduction to the minimal model problem*, Algebraic geometry, Sendai, 1985, 283-360, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987. MR**946243 (89e:14015)****[KeMM]**S. Keel, K. Matsuki and J. Kernan, Log abundance theorem for threefolds. Duke Math. J. 75 (1994), no. 1, 99-119, Corrections to: ``Log abundance theorem for threefolds'', Duke Math. J. 122 (2004), no. 3, 625-630. MR**2057020 (2005a:14018)**;MR**1284817 (95g:14021)****[KoKo]**J. Kollár and S. J Kovács, Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23 (2010), 791-813. MR**2629988****[KoM]**J. Kollár and S. Mori.*Birational geometry of algebraic varieties*, Cambridge Tracts in Math., 134 (1998). MR**1658959 (2000b:14018)****[NU]**I. Nakamura and K. Ueno, An addition formula for Kodaira dimensions of analytic fibre bundles whose fibre are Moi ezon manifolds, J. Math. Soc. Japan 25 (1973), 363-371. MR**0322213 (48:575)****[N]**N. Nakayama,*Zarisiki decomposition and abundance*, MSJ Memoirs, 14. Mathematical Society of Japan, Tokyo, 2004. MR**2104208 (2005h:14015)****[S]**F. Sakai,*Kodaira dimensions of complements of divisors, Complex analysis and algebraic geometry*, pp. 239-257. Iwanami Shoten, Tokyo, 1977. MR**0590433 (58:28689)****[Sim]**C. Simpson, Subspaces of moduli spaces of rank one local systems, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 3, 361-401. MR**1222278 (94f:14008)****[Siu]**Y. T. Siu, Abundance conjecture, Geometry and analysis. No. 2, 271-317, Adv. Lect. Math. (ALM), 18, Int. Press, Somerville, MA, 2011. MR**2882447****[U]**K. Ueno,*Classification theory of algebraic varieties and compact complex spaces*, Lecture Notes in Math., Vol. 439, Springer, Berlin, 1975. MR**0506253 (58:22062)**

Additional Information

**Yoshinori Gongyo**

Affiliation:
Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan.

Email:
gongyo@ms.u-tokyo.ac.jp

DOI:
https://doi.org/10.1090/S1056-3911-2012-00593-1

Received by editor(s):
September 11, 2010

Received by editor(s) in revised form:
March 6, 2011

Published electronically:
November 14, 2012

Additional Notes:
The author was partially supported by the Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (22-7399)