Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 

 

Existence and properties of geometric quotients


Author: David Rydh
Journal: J. Algebraic Geom. 22 (2013), 629-669
DOI: https://doi.org/10.1090/S1056-3911-2013-00615-3
Published electronically: May 13, 2013
MathSciNet review: 3084720
Full-text PDF

Abstract | References | Additional Information

Abstract: In this paper, we study quotients of groupoids and coarse moduli spaces of stacks in a general setting. Geometric quotients are not always categorical, but we present a natural topological condition under which a geometric quotient is categorical. We also show the existence of geometric quotients of finite flat groupoids and give explicit local descriptions. Exploiting similar methods, we give an easy proof of the existence of quotients of flat groupoids with finite stabilizers. As the proofs do not use Noetherian methods and are valid for general algebraic spaces and algebraic stacks, we obtain a slightly improved version of Keel and Mori's theorem.


References [Enhancements On Off] (What's this?)

  • [AOV08] Dan Abramovich, Martin Olsson, and Angelo Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057–1091 (English, with English and French summaries). MR 2427954
  • [Art69a] M. Artin, Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21–71. MR 0260746
  • [Art69b] M. Artin, The implicit function theorem in algebraic geometry, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 13–34. MR 0262237
  • [Art71] M. Artin, On the joins of Hensel rings, Advances in Math. 7 (1971), 282–296 (1971). MR 0289501, https://doi.org/10.1016/S0001-8708(71)80007-5
  • [Art73] Michael Artin, Théorèmes de représentabilité pour les espaces algébriques, Les Presses de l’Université de Montréal, Montreal, Que., 1973. En collaboration avec Alexandru Lascu et Jean-François Boutot; Séminaire de Mathématiques Supérieures, No. 44 (Été, 1970). MR 0407011
  • [Art74] M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165–189. MR 0399094, https://doi.org/10.1007/BF01390174
  • [BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822
  • [Con05] Brian Conrad, The Keel-Mori theorem via stacks, Nov 2005, Preprint, p. 12.
  • [DG70] Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
  • [EGAI] A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, second ed., Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 166, Springer-Verlag, Berlin, 1971.
  • [EGAII] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222 (French). MR 0163909
  • [EGAIV] -, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, Inst. Hautes Études Sci. Publ. Math. (1964-67), nos. 20, 24, 28, 32.
  • [ES04] Torsten Ekedahl and Roy Skjelnes, Recovering the good component of the Hilbert scheme, Preprint, May 2004, arXiv:math.AG/0405073.
  • [Fer03] Daniel Ferrand, Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003), no. 4, 553–585 (French, with English and French summaries). MR 2044495
  • [FGA] Alexander Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, Paris, 1962 (French). MR 0146040
  • [Gab63] Pierre Gabriel, Construction de préschémas quotient, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64) Inst. Hautes Études Sci., Paris, 1963, pp. 37 (French). MR 0257095
  • [Gir64] Jean Giraud, Méthode de la descente, Bull. Soc. Math. France Mém. 2 (1964), viii+150 (French). MR 0190142
  • [GIT] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
  • [GM11] Gerard van der Geer and Ben Moonen, Abelian Varieties, Book in preparation, 2011.
  • [Gro10] Philipp Gross, Vector bundles as generators on schemes and stacks, PhD. Thesis, Düsseldorf, May 2010.
  • [Hor71] G. Horrocks, Birationally ruled surfaces without embeddings in regular schemes, Bull. London Math. Soc. 3 (1971), 57–60. MR 0284437, https://doi.org/10.1112/blms/3.1.57
  • [Kle66] Steven L. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293–344. MR 0206009, https://doi.org/10.2307/1970447
  • [KM97] Seán Keel and Shigefumi Mori, Quotients by groupoids, Ann. of Math. (2) 145 (1997), no. 1, 193–213. MR 1432041, https://doi.org/10.2307/2951828
  • [Knu71] Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. MR 0302647
  • [Kol97] János Kollár, Quotient spaces modulo algebraic groups, Ann. of Math. (2) 145 (1997), no. 1, 33–79. MR 1432036, https://doi.org/10.2307/2951823
  • [Kol11] János Kollár, Quotients by finite equivalence relations, Current Developments in Algebraic Geometry, Math. Sci. Res. Inst. Publ., vol. 59, Cambridge Univ. Press, Cambridge, 2011, pp. 227-256.
  • [LMB00] Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927
  • [Mat76] Yutaka Matsuura, On a construction of quotient spaces of algebraic spaces, Proceedings of the Institute of Natural Sciences, Nihon University 11 (1976), 1-6.
  • [Mil80] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
  • [Mum70] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1970. MR 0282985
  • [Nor78] M. V. Nori, Varieties with no smooth embeddings, C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer, Berlin-New York, 1978, pp. 241–246. MR 541024
  • [Ray70] Michel Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics, Vol. 169, Springer-Verlag, Berlin-New York, 1970 (French). MR 0277519
  • [RS10] David Rydh and Roy Skjelnes, An intrinsic construction of the principal component of the Hilbert scheme, J. Lond. Math. Soc. (2) 82 (2010), no. 2, 459–481. MR 2725049, https://doi.org/10.1112/jlms/jdq042
  • [Ryd08a] David Rydh, Families of cycles and the Chow scheme, Ph.D. thesis, Royal Institute of Technology, Stockholm, May 2008, p. 218.
  • [Ryd08b] -, Families of zero-cycles and divided powers: I. Representability, Preprint, Part of [Ryd08a], Mar 2008, arXiv:0803.0618v1.
  • [Ryd08c] -, Hilbert and Chow schemes of points, symmetric products and divided powers, Part of [Ryd08a], May 2008.
  • [Ryd09] -, Noetherian approximation of algebraic spaces and stacks, Preprint, Apr 2009, arXiv:0904.0227v3.
  • [Ryd10] David Rydh, Submersions and effective descent of étale morphisms, Bull. Soc. Math. France 138 (2010), no. 2, 181–230 (English, with English and French summaries). MR 2679038
  • [Ryd11a] David Rydh, Étale dévissage, descent and pushouts of stacks, J. Algebra 331 (2011), 194–223. MR 2774654, https://doi.org/10.1016/j.jalgebra.2011.01.006
  • [Ryd11b] David Rydh, Representability of Hilbert schemes and Hilbert stacks of points, Comm. Algebra 39 (2011), no. 7, 2632–2646. MR 2821738, https://doi.org/10.1080/00927872.2010.488678
  • [Sch03] Stefan Schröer, The bigger Brauer group is really big, J. Algebra 262 (2003), no. 1, 210–225. MR 1970808, https://doi.org/10.1016/S0021-8693(03)00026-7
  • [Ser59] Jean-Pierre Serre, Groupes algébriques et corps de classes, Publications de l’institut de mathématique de l’université de Nancago, VII. Hermann, Paris, 1959 (French). MR 0103191
  • [SGA1] Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 0354651
  • [SGA4] Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes in Mathematics, Vol. 305, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. MR 0354654
  • [SP] The Stacks Project Authors, Stacks project, http://math.columbia.edu/algebraic_
    geometry/stacks-git.
  • [Vis05] Angelo Vistoli, Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 1–104. MR 2223406
  • [Wło93] Jarosław Włodarczyk, Embeddings in toric varieties and prevarieties, J. Algebraic Geom. 2 (1993), no. 4, 705–726. MR 1227474


Additional Information

David Rydh
Affiliation: Department of Mathematics, KTH, 100 44 Stockholm, Sweden
Email: dary@math.kth.se

DOI: https://doi.org/10.1090/S1056-3911-2013-00615-3
Received by editor(s): November 13, 2007
Received by editor(s) in revised form: April 15, 2011
Published electronically: May 13, 2013
Article copyright: © Copyright 2013 University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.

Journal of Algebraic Geometry
The Journal of Algebraic Geometry
is sponsored by the Department of Mathematical Sciences
of Tsinghua University
and is distributed by the American Mathematical Society
for University Press, Inc.
Online ISSN 1534-7486; Print ISSN 1056-3911
© 2017 University Press, Inc.
Comments: jag-query@ams.org
AMS Website