Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

The gonality theorem of Noether for hypersurfaces


Authors: F. Bastianelli, R. Cortini and P. De Poi
Journal: J. Algebraic Geom. 23 (2014), 313-339
DOI: https://doi.org/10.1090/S1056-3911-2013-00603-7
Published electronically: September 10, 2013
MathSciNet review: 3166393
Full-text PDF

Abstract | References | Additional Information

Abstract: It is well known since Noether that the gonality of a smooth curve $ {C\subset \mathbb{P}^2}$ of degree $ d\geq 4$ is $ d-1$. Given a $ k$-dimensional complex projective variety $ X$, the most natural extension of gonality is probably the degree of irrationality, that is, the minimum degree of a dominant rational map $ {X\dashrightarrow \mathbb{P}^k}$. In this paper we are aimed at extending the assertion on plane curves to smooth hypersurfaces in $ \mathbb{P}^n$ in terms of degree of irrationality. We prove that both surfaces in $ \mathbb{P}^3$ and threefolds in $ \mathbb{P}^4$ of sufficiently large degree $ d$ have degree of irrationality $ d-1$, except for finitely many cases we classify, whose degree of irrationality is $ d-2$. To this aim we use Mumford's technique of induced differentials and we shift the problem to study first order congruences of lines of $ \mathbb{P}^n$. In particular, we also slightly improve the description of such congruences in $ \mathbb{P}^4$ and we provide a bound on the degree of irrationality of hypersurfaces of arbitrary dimension.


References [Enhancements On Off] (What's this?)

  • [1] S. I. Agafonov and E. V. Ferapontov, Systems of conservation laws in the setting of the projective theory of congruences: reducible and linearly degenerate systems, Differential Geom. Appl. 17 (2002), no. 2-3, 153-173. 8th International Conference on Differential Geometry and its Applications (Opava, 2001). MR 1925763 (2003j:53014), https://doi.org/10.1016/S0926-2245(02)00105-5
  • [2] Enrique Arrondo, Line congruences of low order, Milan J. Math. 70 (2002), 223-243. MR 1936753 (2003h:14080), https://doi.org/10.1007/s00032-002-0008-4
  • [3] Enrique Arrondo, Marina Bertolini, and Cristina Turrini, Focal loci in $ G(1,N)$, Asian J. Math. 9 (2005), no. 4, 449-472. MR 2215680 (2007b:14118)
  • [4] Bénédicte Basili, Indice de Clifford des intersections complètes de l'espace, Bull. Soc. Math. France 124 (1996), no. 1, 61-95 (French, with English and French summaries). MR 1395007 (97f:14048)
  • [5] F. Bastianelli, On symmetric products of curves, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2493-2519. MR 2888217, https://doi.org/10.1090/S0002-9947-2012-05378-5
  • [6] C. Ciliberto, Alcune applicazioni di un classico procedimento di Castelnuovo, Seminari di geometria, 1982-1983 (Bologna, 1982/1983), Univ. Stud. Bologna, Bologna, 1984, 17-43.
  • [7] Ciro Ciliberto and Edoardo Sernesi, Singularities of the theta divisor and congruences of planes, J. Algebraic Geom. 1 (1992), no. 2, 231-250. MR 1144438 (92j:14034)
  • [8] C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356. MR 0302652 (46 #1796)
  • [9] Herbert Clemens, Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 629-636. MR 875091 (88c:14037)
  • [10] R. Cortini, Il grado di irrazionalità di varietà algebriche, Ph.D. thesis (Politecnico di Torino, 1999).
  • [11] P. De Poi, On First Order Congruences of Lines, Ph.D. thesis (SISSA-ISAS, Trieste, 1999).
  • [12] Pietro De Poi, On first order congruences of lines of $ \mathbb{P}^4$ with a fundamental curve, Manuscripta Math. 106 (2001), no. 1, 101-116. MR 1860982 (2003c:14058), https://doi.org/10.1007/PL00005882
  • [13] Pietro De Poi, Threefolds in $ {\mathbb{P}}^5$ with one apparent quadruple point, Comm. Algebra 31 (2003), no. 4, 1927-1947. MR 1972898 (2004m:14083), https://doi.org/10.1081/AGB-120018514
  • [14] Pietro De Poi, Congruences of lines with one-dimensional focal locus, Port. Math. (N.S.) 61 (2004), no. 3, 329-338. MR 2098024 (2006b:14087)
  • [15] Pietro De Poi, On first order congruences of lines in $ {\mathbb{P}}^4$ with irreducible fundamental surface, Math. Nachr. 278 (2005), no. 4, 363-378. MR 2121565 (2005k:14115), https://doi.org/10.1002/mana.200310246
  • [16] Pietro De Poi, On first order congruences of lines in $ \mathbb{P}^4$ with generically non-reduced fundamental surface, Asian J. Math. 12 (2008), no. 1, 55-64. MR 2415011 (2010e:14049)
  • [17] Pietro De Poi and Emilia Mezzetti, On congruences of linear spaces of order one, Rend. Istit. Mat. Univ. Trieste 39 (2007), 177-206. MR 2441617 (2009f:14103)
  • [18] Pietro De Poi and Emilia Mezzetti, Congruences of lines in $ \mathbb{P}^5$, quadratic normality, and completely exceptional Monge-Ampère equations, Geom. Dedicata 131 (2008), 213-230. MR 2369200 (2008k:14099), https://doi.org/10.1007/s10711-007-9228-7
  • [19] I. V. Dolgačev, Special algebraic $ K3$-surfaces. I, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 833-847 (Russian). MR 0332798 (48 #11124)
  • [20] G. Fano, Sulle congruenze di rette del terzo ordine prive di linea singolare, Att. Acc. di Scienze Torino 29 (1894), 474-493.
  • [21] Gavril Farkas, Brill-Noether loci and the gonality stratification of $ \mathcal {M}_g$, J. Reine Angew. Math. 539 (2001), 185-200. MR 1863860 (2002m:14024), https://doi.org/10.1515/crll.2001.074
  • [22] Phillip Griffiths and Joseph Harris, Residues and zero-cycles on algebraic varieties, Ann. of Math. (2) 108 (1978), no. 3, 461-505. MR 512429 (80d:14006), https://doi.org/10.2307/1971184
  • [23] Robin Hartshorne, Ample subvarieties of algebraic varieties, Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970. MR 0282977 (44 #211)
  • [24] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [25] Robin Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986), no. 3, 375-386. MR 857224 (87k:14036)
  • [26] Robin Hartshorne and Enrico Schlesinger, Gonality of a general ACM curve in $ \mathbb{P}^3$, Pacific J. Math. 251 (2011), no. 2, 269-313. MR 2811034 (2012f:14062), https://doi.org/10.2140/pjm.2011.251.269
  • [27] V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140-166 (Russian). MR 0291172 (45 #266)
  • [28] Kazuhiro Konno, Minimal pencils on smooth surfaces in $ \mathbb{P}^3$, Osaka J. Math. 45 (2008), no. 3, 789-805. MR 2468594 (2009i:14051)
  • [29] Ernst Eduard Kummer, Collected papers, Springer-Verlag, Berlin, 1975. Volume II: Function theory, geometry and miscellaneous; Edited and with a foreword by André Weil. MR 0465761 (57 #5650b)
  • [30] Angelo Felice Lopez, Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc. 89 (1991), no. 438, x+100. MR 1043786 (91f:14030)
  • [31] Angelo Felice Lopez and Gian Pietro Pirola, On the curves through a general point of a smooth surface in $ \mathbf {P}^3$, Math. Z. 219 (1995), no. 1, 93-106. MR 1340851 (96h:14024), https://doi.org/10.1007/BF02572352
  • [32] G. Marletta, Sui complessi di rette del primo ordine dello spazio a quattro dimensioni, Rend. Circ. Mat. Palermo 28 (1909), 353-399.
  • [33] G. Martens, The gonality of curves on a Hirzebruch surface, Arch. Math. (Basel) 67 (1996), no. 4, 349-352. MR 1407339 (97k:14036), https://doi.org/10.1007/BF01197600
  • [34] T. T. Moh and W. J. Heinzer, A generalized Lüroth theorem for curves, J. Math. Soc. Japan 31 (1979), no. 1, 85-86. MR 519037 (80c:14017), https://doi.org/10.2969/jmsj/03110085
  • [35] T. T. Moh and W. Heinzer, On the Lüroth semigroup and Weierstrass canonical divisors, J. Algebra 77 (1982), no. 1, 62-73. MR 665164 (83k:14027), https://doi.org/10.1016/0021-8693(82)90277-0
  • [36] D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195-204. MR 0249428 (40 #2673)
  • [37] Makoto Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Mathematics, vol. 767, Springer, Berlin, 1979. MR 555241 (82i:32046)
  • [38] M. Noether, Zur Grundlegung der Theorie der algebraischen Raumcurven, Verl. d. Konig. Akad. d. Wiss., Berlin (1883).
  • [39] Ziv Ran, Surfaces of order $ 1$ in Grassmannians, J. Reine Angew. Math. 368 (1986), 119-126. MR 850617 (87j:14061), https://doi.org/10.1515/crll.1986.368.119
  • [40] C. Segre, Preliminari di una teoria di vatietà luoghi di spazi, Rend. Circ. Mat. Palermo 30 (1910), 87-121.
  • [41] Hiro-o Tokunaga and Hisao Yoshihara, Degree of irrationality of abelian surfaces, J. Algebra 174 (1995), no. 3, 1111-1121. MR 1337188 (96e:14039), https://doi.org/10.1006/jabr.1995.1170
  • [42] Claire Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), no. 1, 200-213. MR 1420353 (97j:14047)
  • [43] Geng Xu, Subvarieties of general hypersurfaces in projective space, J. Differential Geom. 39 (1994), no. 1, 139-172. MR 1258918 (95d:14043)
  • [44] Hisao Yoshihara, Degree of irrationality of an algebraic surface, J. Algebra 167 (1994), no. 3, 634-640. MR 1287064 (95g:14039), https://doi.org/10.1006/jabr.1994.1206
  • [45] Hisao Yoshihara, A note on the inequality of degrees of irrationalities of algebraic surfaces, J. Algebra 207 (1998), no. 1, 272-275. MR 1643098 (99k:14058), https://doi.org/10.1006/jabr.1998.7464


Additional Information

F. Bastianelli
Affiliation: Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via Cozzi 53, 20125 Milano, Italy
Email: francesco.bastianelli@unimib.it

R. Cortini
Affiliation: I. T. G. Fazzini-Mercantini, via Salvo D’Acquisto 30, 63013 Grottammare (AP) - Italy
Email: renzacortini@fazzinimercantini.it

P. De Poi
Affiliation: Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, 33100 Udine - Italy
Email: pietro.depoi@uniud.it

DOI: https://doi.org/10.1090/S1056-3911-2013-00603-7
Received by editor(s): February 28, 2011
Received by editor(s) in revised form: May 19, 2011
Published electronically: September 10, 2013
Additional Notes: The first author has been partially supported by Istituto Nazionale di Alta Matematica “F. Severi”; FAR 2010 (PV) “Varietà algebriche, calcolo algebrico, grafi orientati e topologici”, and INdAM (GNSAGA). The third author has been partially supported by MIUR, project “Geometria delle varietà algebriche e dei loro spazi di moduli”
Article copyright: © Copyright 2013 University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society