Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

On the behavior of test ideals under finite morphisms


Authors: Karl Schwede and Kevin Tucker
Journal: J. Algebraic Geom. 23 (2014), 399-443
DOI: https://doi.org/10.1090/S1056-3911-2013-00610-4
Published electronically: September 9, 2013
MathSciNet review: 3205587
Full-text PDF

Abstract | References | Additional Information

Abstract: We derive precise transformation rules for test ideals under an arbitrary finite surjective morphism $ \pi \colon Y \to X$ of normal varieties in prime characteristic $ p > 0$. Specifically, given a $ \mathbb{Q}$-divisor $ \Delta _{X}$ on $ X$ and any $ \mathcal {O}_{X}$-linear map $ \mathfrak{T} \colon K(Y) \to K(X)$, we associate a $ \mathbb{Q}$-divisor $ \Delta _{Y}$ on $ Y$ such that $ \mathfrak{T} ( \pi _{*}\tau (Y;\Delta _{Y})) = \tau (X;\Delta _{X})$. When $ \pi $ is separable and $ \mathfrak{T} = \operatorname {Tr}_{Y/X}$ is the field trace, we have $ \Delta _{Y} = \pi ^{*} \Delta _{X} - \operatorname {Ram}_{\pi }$, where $ \operatorname {Ram}_{\pi }$ is the ramification divisor. If, in addition, $ \operatorname {Tr}_{Y/X}(\pi _{*}\mathcal {O}_{Y}) = \mathcal {O}_{X}$, we conclude that $ \pi _{*}\tau (Y;\Delta _{Y}) \cap K(X) = \tau (X;\Delta _{X})$ and thereby recover the analogous transformation rule to multiplier ideals in characteristic zero. Our main technique is a careful study of when an $ \mathcal {O}_{X}$-linear map $ F_{*} \mathcal {O}_{X} \to \mathcal {O}_{X}$ lifts to an $ \mathcal {O}_{Y}$-linear map $ F_{*} \mathcal {O}_{Y} \to \mathcal {O}_{Y}$, and the results obtained about these liftings are of independent interest as they relate to the theory of Frobenius splittings. In particular, again assuming $ \operatorname {Tr}_{Y/X}(\pi _{*}\mathcal {O}_{Y}) = \mathcal {O}_{X}$, we obtain transformation results for $ F$-pure singularities under finite maps which mirror those for log canonical singularities in characteristic zero. Finally, we explore new conditions on the singularities of the ramification locus, which imply that, for a finite extension of normal domains $ R \subseteq S$ in characteristic $ p > 0$, the trace map $ \mathfrak{T} : \operatorname {Frac} S \to \operatorname {Frac} R$ sends $ S$ onto $ R$.


References [Enhancements On Off] (What's this?)

  • [AM99] Ian M. Aberbach and Brian MacCrimmon, Some results on test elements, Proc. Edinburgh Math. Soc. (2) 42 (1999), no. 3, 541-549. MR 1721770 (2000i:13005), https://doi.org/10.1017/S0013091500020502
  • [Art75] M. Artin, Wildly ramified $ Z/2$ actions in dimension two, Proc. Amer. Math. Soc. 52 (1975), 60-64. MR 0374136 (51 #10336)
  • [BMS08] Manuel Blickle, Mircea Mustaţa, and Karen E. Smith, Discreteness and rationality of $ F$-thresholds, Michigan Math. J. 57 (2008), 43-61. Special volume in honor of Melvin Hochster. MR 2492440 (2010c:13003), https://doi.org/10.1307/mmj/1220879396
  • [BSTZ10] Manuel Blickle, Karl Schwede, Shunsuke Takagi, and Wenliang Zhang, Discreteness and rationality of $ F$-jumping numbers on singular varieties, Math. Ann. 347 (2010), no. 4, 917-949. MR 2658149 (2011k:13008), https://doi.org/10.1007/s00208-009-0461-2
  • [BST11] M. BLICKLE, K. SCHWEDE, AND K. TUCKER: $ F$-singularities via alterations, arXiv:1107.3807.
  • [BS02] A. Bravo and K. E. Smith, Behavior of test ideals under smooth and étale homomorphisms, J. Algebra 247 (2002), no. 1, 78-94. MR 1873384 (2002m:13007), https://doi.org/10.1006/jabr.2001.9010
  • [BK05] Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston Inc., Boston, MA, 2005. MR 2107324 (2005k:14104)
  • [dS97] Bart de Smit, The different and differentials of local fields with imperfect residue fields, Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 2, 353-365. MR 1454030 (98d:11148), https://doi.org/10.1017/S0013091500023798
  • [Ein97] Lawrence Ein, Multiplier ideals, vanishing theorems and applications, Algebraic geometry--Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 203-219. MR 1492524 (98m:14006)
  • [Fed83] Richard Fedder, $ F$-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461-480. MR 701505 (84h:13031), https://doi.org/10.2307/1999165
  • [Gab04] Ofer Gabber, Notes on some $ t$-structures, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 711-734. MR 2099084 (2005m:14025)
  • [Gro63] A. GROTHENDIECK: Revêtements étales et groupe fondamental. Fasc. II: Exposés 6, 8 à 11, Séminaire de Géométrie Algébrique, vol. 1960/61, Institut des Hautes Études Scientifiques, Paris, 1963. MR 0217088 (36:179b)
  • [GM71] Alexander Grothendieck and Jacob P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathematics, Vol. 208, Springer-Verlag, Berlin, 1971. MR 0316453 (47 #5000)
  • [Har01] Nobuo Hara, Geometric interpretation of tight closure and test ideals, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1885-1906 (electronic). MR 1813597 (2001m:13009), https://doi.org/10.1090/S0002-9947-01-02695-2
  • [HT04] Nobuo Hara and Shunsuke Takagi, On a generalization of test ideals, Nagoya Math. J. 175 (2004), 59-74. MR 2085311 (2005g:13009)
  • [HW02] Nobuo Hara and Kei-Ichi Watanabe, F-regular and F-pure rings vs. log terminal and log canonical singularities, J. Algebraic Geom. 11 (2002), no. 2, 363-392. MR 1874118 (2002k:13009), https://doi.org/10.1090/S1056-3911-01-00306-X
  • [HY03] Nobuo Hara and Ken-Ichi Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3143-3174 (electronic). MR 1974679 (2004i:13003), https://doi.org/10.1090/S0002-9947-03-03285-9
  • [Har66] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin, 1966. MR 0222093 (36 #5145)
  • [Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [Har80] Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121-176. MR 597077 (82b:14011), https://doi.org/10.1007/BF01467074
  • [Har94] Robin Hartshorne, Generalized divisors on Gorenstein schemes, Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), 1994, pp. 287-339. MR 1291023 (95k:14008), https://doi.org/10.1007/BF00960866
  • [Hoc07] M. HOCHSTER: Foundations of tight closure theory, lecture notes from a course taught at the University of Michigan Fall 2007 (2007).
  • [HH90] Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31-116. MR 1017784 (91g:13010), https://doi.org/10.2307/1990984
  • [HH94a] Melvin Hochster and Craig Huneke, $ F$-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), no. 1, 1-62. MR 1273534 (95d:13007), https://doi.org/10.2307/2154942
  • [HH94b] Melvin Hochster and Craig Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994), no. 4, 599-670. MR 1297848 (95k:13002)
  • [Hun96] Craig Huneke, Tight closure and its applications, CBMS Regional Conference Series in Mathematics, vol. 88, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. With an appendix by Melvin Hochster. MR 1377268 (96m:13001)
  • [KS10] Moritz Kerz and Alexander Schmidt, On different notions of tameness in arithmetic geometry, Math. Ann. 346 (2010), no. 3, 641-668. MR 2578565 (2011a:14052), https://doi.org/10.1007/s00208-009-0409-6
  • [Kol97] János Kollár, Singularities of pairs, Algebraic geometry--Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221-287. MR 1492525 (99m:14033)
  • [Kc92] Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991; Astérisque No. 211 (1992). MR 1225842 (94f:14013)
  • [KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959 (2000b:14018)
  • [Kun76] Ernst Kunz, On Noetherian rings of characteristic $ p$, Amer. J. Math. 98 (1976), no. 4, 999-1013. MR 0432625 (55 #5612)
  • [Kun86] Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975 (88e:14025)
  • [Laz04] Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472 (2005k:14001b)
  • [Lip69] Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195-279. MR 0276239 (43 #1986)
  • [LS01] Gennady Lyubeznik and Karen E. Smith, On the commutation of the test ideal with localization and completion, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3149-3180 (electronic). MR 1828602 (2002f:13010), https://doi.org/10.1090/S0002-9947-01-02643-5
  • [Mat89] Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461 (90i:13001)
  • [MR85] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27-40. MR 799251 (86k:14038), https://doi.org/10.2307/1971368
  • [MS91] V. B. Mehta and V. Srinivas, Normal $ F$-pure surface singularities, J. Algebra 143 (1991), no. 1, 130-143. MR 1128650 (92j:14044), https://doi.org/10.1016/0021-8693(91)90255-7
  • [Mor96] Patrick Morandi, Field and Galois theory, Graduate Texts in Mathematics, vol. 167, Springer-Verlag, New York, 1996. MR 1410264 (97i:12001)
  • [Mor53] Mikao Moriya, Theorie der Derivationen und Körperdifferenten, Math. J. Okayama Univ. 2 (1953), 111-148 (German). MR 0054643 (14,952f)
  • [MTW05] M. MUSTAŢA, S. TAKAGI, AND K.-I. WATANABE: F-thresholds and Bernstein-Sato polynomials, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 341-364. MR 2185754 (2007b:13010)
  • [MY09] Mircea Mustaţă and Ken-Ichi Yoshida, Test ideals vs. multiplier ideals, Nagoya Math. J. 193 (2009), 111-128. MR 2502910 (2010a:13010)
  • [SS75] Günter Scheja and Uwe Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math. 278/279 (1975), 174-190 (German). MR 0393056 (52 #13867)
  • [Sch08] Karl Schwede, Generalized test ideals, sharp $ F$-purity, and sharp test elements, Math. Res. Lett. 15 (2008), no. 6, 1251-1261. MR 2470398 (2010e:13004)
  • [Sch09] Karl Schwede, $ F$-adjunction, Algebra Number Theory 3 (2009), no. 8, 907-950. MR 2587408 (2011b:14006), https://doi.org/10.2140/ant.2009.3.907
  • [Sch10a] Karl Schwede, Centers of $ F$-purity, Math. Z. 265 (2010), no. 3, 687-714. MR 2644316 (2011e:13011), https://doi.org/10.1007/s00209-009-0536-5
  • [Sch10b] Karl Schwede, A refinement of sharply $ F$-pure and strongly $ F$-regular pairs, J. Commut. Algebra 2 (2010), no. 1, 91-109. MR 2607103 (2011c:13007), https://doi.org/10.1216/JCA-2010-2-1-91
  • [ST11] K. SCHWEDE AND K. TUCKER: Explicitly extending Frobenius splittings over finite maps, arXiv:1201.5973, originally an appendix to the paper ``On the behavior of test ideals under finite morphisms'', 2011.
  • [Ser79] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237 (82e:12016)
  • [Sin99] Anurag K. Singh, $ \mathbf {Q}$-Gorenstein splinter rings of characteristic $ p$ are F-regular, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 2, 201-205. MR 1735920 (2000j:13006), https://doi.org/10.1017/S0305004199003710
  • [Smi00] Karen E. Smith, The multiplier ideal is a universal test ideal, Comm. Algebra 28 (2000), no. 12, 5915-5929. Special issue in honor of Robin Hartshorne. MR 1808611 (2002d:13008), https://doi.org/10.1080/00927870008827196
  • [Tak04a] Shunsuke Takagi, F-singularities of pairs and inversion of adjunction of arbitrary codimension, Invent. Math. 157 (2004), no. 1, 123-146. MR 2135186 (2006g:14028), https://doi.org/10.1007/s00222-003-0350-3
  • [Tak04b] Shunsuke Takagi, An interpretation of multiplier ideals via tight closure, J. Algebraic Geom. 13 (2004), no. 2, 393-415. MR 2047704 (2005c:13002), https://doi.org/10.1090/S1056-3911-03-00366-7
  • [Tak06] Shunsuke Takagi, Formulas for multiplier ideals on singular varieties, Amer. J. Math. 128 (2006), no. 6, 1345-1362. MR 2275023 (2007i:14006)
  • [TW04] Shunsuke Takagi and Kei-ichi Watanabe, On F-pure thresholds, J. Algebra 282 (2004), no. 1, 278-297. MR 2097584 (2006a:13010), https://doi.org/10.1016/j.jalgebra.2004.07.011
  • [Tuc09] Kevin Tucker, Integrally closed ideals on log terminal surfaces are multiplier ideals, Math. Res. Lett. 16 (2009), no. 5, 903-908. MR 2576706 (2011c:14055)


Additional Information

Karl Schwede
Affiliation: Department of Mathematics, The Pennsylvania State University, 318C McAlister Building, University Park, Pennsylvania 16802
Email: schwede@math.psu.edu

Kevin Tucker
Affiliation: Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60607
Email: kftucker@uic.edu

DOI: https://doi.org/10.1090/S1056-3911-2013-00610-4
Received by editor(s): March 20, 2011
Received by editor(s) in revised form: August 25, 2011
Published electronically: September 9, 2013
Additional Notes: The first author was partially supported by a National Science Foundation postdoctoral fellowship, RTG grant number 0502170 and NSF DMS 1064485/0969145. The second author was partially supported by RTG grant number 0502170 and a National Science Foundation postdoctoral fellowship DMS 1004344
Article copyright: © Copyright 2013 University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society