Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

A structure theorem for $ \mathcal{SU}_C(2)$ and the moduli of pointed rational curves


Authors: Alberto Alzati and Michele Bolognesi
Journal: J. Algebraic Geom. 24 (2015), 283-310
DOI: https://doi.org/10.1090/S1056-3911-2014-00659-7
Published electronically: June 11, 2014
MathSciNet review: 3311585
Full-text PDF

Abstract | References | Additional Information

Abstract: Let $ \mathcal {SU}_C(2)$ be the moduli space of rank 2 semistable vector bundles with trivial determinant on a smooth complex algebraic curve $ C$ of genus $ g>1$. We assume $ C$ nonhyperellptic if $ g>2$. In this paper we construct large families of pointed rational normal curves over certain linear sections of $ \mathcal {SU}_C(2)$. This allows us to give an interpretation of these subvarieties of $ \mathcal {SU}_C(2)$ in terms of the moduli space of curves $ \mathcal {M}_{0,2g}$. In fact, there exists a natural linear map $ \mathcal {SU}_C(2) \to \mathbb{P}^g$ with modular meaning, whose fibers are birational to $ \mathcal {M}_{0,2g}$, the moduli space of $ 2g$-pointed genus zero curves. If $ g<4$, these modular fibers are even isomorphic to the GIT compactification $ \mathcal {M}_{0,2g}^{GIT}$. The families of pointed rational normal curves are recovered as the fibers of the maps that classify extensions of line bundles associated to some effective divisors.


References [Enhancements On Off] (What's this?)

  • [1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932 (86h:14019)
  • [2] D. Avritzer and H. Lange, The moduli spaces of hyperelliptic curves and binary forms, Math. Z. 242 (2002), no. 4, 615-632. MR 1981190 (2004c:14051), https://doi.org/10.1007/s002090100370
  • [3] Arnaud Beauville, Fibrés de rang $ 2$ sur une courbe, fibré déterminant et fonctions thêta, Bull. Soc. Math. France 116 (1988), no. 4, 431-448 (1989) (French, with English summary). MR 1005388 (91b:14038)
  • [4] Arnaud Beauville, The Coble hypersurfaces, C. R. Math. Acad. Sci. Paris 337 (2003), no. 3, 189-194 (English, with English and French summaries). MR 2001133 (2004k:14056), https://doi.org/10.1016/S1631-073X(03)00302-9
  • [5] Aaron Bertram, Moduli of rank-$ 2$ vector bundles, theta divisors, and the geometry of curves in projective space, J. Differential Geom. 35 (1992), no. 2, 429-469. MR 1158344 (93g:14037)
  • [6] Michele Bolognesi, A conic bundle degenerating on the Kummer surface, Math. Z. 261 (2009), no. 1, 149-168. MR 2452642 (2009h:14021), https://doi.org/10.1007/s00209-008-0319-4
  • [7] Michele Bolognesi, Forgetful linear systems on the projective space and rational normal curves over $ \mathcal {M}^{\rm GIT}_{0,2n}$, Bull. Lond. Math. Soc. 43 (2011), no. 3, 583-596. MR 2820147 (2012m:14049), https://doi.org/10.1112/blms/bdq125
  • [8] Michele Bolognesi and Sonia Brivio, Coherent systems and modular subavrieties of $ \mathcal {SU}_C(r)$, Internat. J. Math. 23 (2012), no. 4, 1250037, 23. MR 2903191, https://doi.org/10.1142/S0129167X12500371
  • [9] Sonia Brivio and Alessandro Verra, The theta divisor of $ {\rm SU}_C(2,2d)^s$ is very ample if $ C$ is not hyperelliptic, Duke Math. J. 82 (1996), no. 3, 503-552. MR 1387683 (97e:14017), https://doi.org/10.1215/S0012-7094-96-08222-8
  • [10] Arthur B. Coble, Algebraic geometry and theta functions, American Mathematical Society Colloquium Publications, vol. 10, American Mathematical Society, Providence, R.I., 1982. Reprint of the 1929 edition. MR 733252 (84m:14001)
  • [11] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109. MR 0262240 (41 #6850)
  • [12] Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155 (90i:14009)
  • [13] J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53-94 (French). MR 999313 (90d:14008), https://doi.org/10.1007/BF01850655
  • [14] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. A first course; Corrected reprint of the 1992 original. MR 1416564 (97e:14001)
  • [15] Brendan Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003), no. 2, 316-352. MR 1957831 (2004b:14040), https://doi.org/10.1016/S0001-8708(02)00058-0
  • [16] Benjamin Howard, John Millson, Andrew Snowden, and Ravi Vakil, The equations for the moduli space of $ n$ points on the line, Duke Math. J. 146 (2009), no. 2, 175-226. MR 2477759 (2009m:14070), https://doi.org/10.1215/00127094-2008-063
  • [17] Bruce Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR 1438547 (98c:14033)
  • [18] B. van Geemen and E. Izadi, The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian, J. Algebraic Geom. 10 (2001), no. 1, 133-177. MR 1795553 (2002e:14058)
  • [19] M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $ \overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239-262. MR 1203685 (94a:14024)
  • [20] Sean Keel and James McKernan, Contractible extremal rays on $ \overline {\mathcal {M}}_{0,n}$, (1996), 1-24, preprint, http://arxiv.org/abs/alg-geom/9607009.
  • [21] Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $ M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161-199. MR 702953 (85d:14038a)
  • [22] Alexis Kouvidakis, On the moduli space of vector bundles on the fibers of the universal curve, J. Differential Geom. 37 (1993), no. 3, 505-522. MR 1217158 (94h:14010)
  • [23] H. Lange and M. S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983), no. 1, 55-72. MR 722927 (85f:14013), https://doi.org/10.1007/BF01458704
  • [24] Yves Laszlo and Christoph Sorger, The line bundles on the moduli of parabolic $ G$-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 4, 499-525 (English, with English and French summaries). MR 1456243 (98f:14007), https://doi.org/10.1016/S0012-9593(97)89929-6
  • [25] D. Mumford and P. Newstead, Periods of a moduli space of bundles on curves, Amer. J. Math. 90 (1968), 1200-1208. MR 0234958 (38 #3272)
  • [26] M. S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2) 89 (1969), 14-51. MR 0242185 (39 #3518)
  • [27] M. S. Narasimhan and S. Ramanan, Vector bundles on curves, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 335-346. MR 0266931 (42 #1833)
  • [28] Quang Minh Nguyễn, Vector bundles, dualities and classical geometry on a curve of genus two, Internat. J. Math. 18 (2007), no. 5, 535-558. MR 2331078 (2008e:14051), https://doi.org/10.1142/S0129167X07004230
  • [29] Angela Ortega, On the moduli space of rank 3 vector bundles on a genus 2 curve and the Coble cubic, J. Algebraic Geom. 14 (2005), no. 2, 327-356. MR 2123233 (2006a:14057), https://doi.org/10.1090/S1056-3911-04-00387-X
  • [30] W. M. Oxbury, C. Pauly, and E. Previato, Subvarieties of $ \mathcal {SU}_C(2)$ and $ 2\theta $-divisors in the Jacobian, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3587-3614. MR 1467474 (98m:14034), https://doi.org/10.1090/S0002-9947-98-02148-5
  • [31] William Oxbury and Christian Pauly, Heisenberg invariant quartics and $ \mathcal {S}\mathcal {U}_C(2)$ for a curve of genus four, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 2, 295-319. MR 1643798 (99k:14022), https://doi.org/10.1017/S0305004198003028
  • [32] Giuseppe Pareschi and Mihnea Popa, Regularity on abelian varieties. I, J. Amer. Math. Soc. 16 (2003), no. 2, 285-302 (electronic). MR 1949161 (2004c:14086), https://doi.org/10.1090/S0894-0347-02-00414-9
  • [33] Christian Pauly, Self-duality of Coble's quartic hypersurface and applications, Michigan Math. J. 50 (2002), no. 3, 551-574. MR 1935152 (2003m:14053), https://doi.org/10.1307/mmj/1039029982
  • [34] Christoph Sorger, La formule de Verlinde, Astérisque 237 (1996), Exp. No. 794, 3, 87-114 (French, with French summary). Séminaire Bourbaki, Vol. 1994/95. MR 1423621 (98f:14009)
  • [35] Pol Vanhaecke, Integrable systems and moduli spaces of rank 2 vector bundles on a non-hyperelliptic genus 3 curve, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 1789-1802 (English, with English and French summaries). MR 2187935 (2007f:14033)
  • [36] A. N. Varchenko, Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface, Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1294-1297 (Russian). MR 712934 (85d:32028)
  • [37] André Weil, Généralisation des fonctions abéliennes, J. Math. Pures Appl. 17 (1938), no. 9, 47-87.


Additional Information

Alberto Alzati
Affiliation: Dipartimento di Matematica “F. Enriques”, Via Saldini 50, 20133 Milano, Italy
Email: alberto.alzati@unimi.it

Michele Bolognesi
Affiliation: IRMAR, Université de Rennes 1, 263 Av. du Général Leclerc, 35042 Rennes Cedex, France
Email: michele.bolognesi@univ-rennes1.fr

DOI: https://doi.org/10.1090/S1056-3911-2014-00659-7
Received by editor(s): October 17, 2011
Received by editor(s) in revised form: March 21, 2013, and October 21, 2013
Published electronically: June 11, 2014
Article copyright: © Copyright 2014

American Mathematical Society