Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Versality of algebraic group actions and rational points on twisted varieties


Authors: Alexander Duncan and Zinovy Reichstein
Journal: J. Algebraic Geom. 24 (2015), 499-530
DOI: https://doi.org/10.1090/S1056-3911-2015-00644-0
Published electronically: March 20, 2015
MathSciNet review: 3344763
Full-text PDF

Abstract | References | Additional Information

Abstract: We formalize and study several competing notions of versality for an action of a linear algebraic group on an algebraic variety $ X$. Our main result is that these notions of versality are equivalent to various statements concerning rational points on twisted forms of $ X$ (existence of rational points, existence of a dense set of rational points, etc.). We give applications of this equivalence in both directions to study versality of group actions and rational points on algebraic varieties. We obtain similar results on $ p$-versality for a prime integer $ p$. An appendix, containing a letter from J.-P. Serre, puts the notion of versality in a historical perspective.


References [Enhancements On Off] (What's this?)

  • [Adl78] Allan Adler, On the automorphism group of a certain cubic threefold, Amer. J. Math. 100 (1978), no. 6, 1275-1280. MR 522700 (80d:14026), https://doi.org/10.2307/2373973
  • [Ami72] S. A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), 408-420. MR 0318216 (47 #6763)
  • [BCF09] Edoardo Ballico, Gianfranco Casnati, and Claudio Fontanari, On the birational geometry of moduli spaces of pointed curves, Forum Math. 21 (2009), no. 5, 935-950. MR 2560399 (2010h:14044), https://doi.org/10.1515/FORUM.2009.046
  • [Bea11] Arnaud Beauville, On finite simple groups of essential dimension 3, 2011. arXiv:1101.1372v2 [math.AG]
  • [Bel98] Pavel Belorousski, Chow rings of moduli spaces of pointed elliptic curves, Thesis (Ph.D.)-The University of Chicago, 1998, ProQuest LLC, Ann Arbor, MI. MR 2716762
  • [BF03] Grégory Berhuy and Giordano Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279-330 (electronic). MR 2029168 (2004m:11056)
  • [BM10] Andrea Bruno and Massimiliano Mella, The automorphism group of $ \overline {M}_{0,n}$, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 949-968. MR 3085097, https://doi.org/10.4171/JEMS/382
  • [Bor91] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012 (92d:20001)
  • [BR97] J. Buhler and Z. Reichstein, On the essential dimension of a finite group, Compositio Math. 106 (1997), no. 2, 159-179. MR 1457337 (98e:12004), https://doi.org/10.1023/A:1000144403695
  • [Bro07] Patrick Brosnan, The essential dimension of a $ g$-dimensional complex abelian variety is $ 2g$, Transform. Groups 12 (2007), no. 3, 437-441. MR 2356317 (2008g:14073), https://doi.org/10.1007/s00031-006-0045-0
  • [CF07] G. Casnati and C. Fontanari, On the rationality of moduli spaces of pointed curves, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 582-596. MR 2352722 (2009h:14045), https://doi.org/10.1112/jlms/jdm011
  • [CG72] C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356. MR 0302652 (46 #1796)
  • [CGR08] V. Chernousov, P. Gille, and Z. Reichstein, Reduction of structure for torsors over semilocal rings, Manuscripta Math. 126 (2008), no. 4, 465-480. MR 2425436 (2009f:14090), https://doi.org/10.1007/s00229-008-0180-0
  • [Cor76] D. F. Coray, Algebraic points on cubic hypersurfaces, Acta Arith. 30 (1976), no. 3, 267-296. MR 0429731 (55 #2742)
  • [CT00] Jean-Louis Colliot-Thélène, Rational connectedness and Galois covers of the projective line, Ann. of Math. (2) 151 (2000), no. 1, 359-373. MR 1745009 (2001b:14046), https://doi.org/10.2307/121121
  • [CTKPR11] Jean-Louis Colliot-Thélène, Boris Kunyavskiĭ, Vladimir L. Popov, and Zinovy Reichstein, Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?, Compos. Math. 147 (2011), no. 2, 428-466. MR 2776610 (2012d:14084), https://doi.org/10.1112/S0010437X10005002
  • [DeM83] Frank R. DeMeyer, Generic polynomials, J. Algebra 84 (1983), no. 2, 441-448. MR 723401 (85a:12007), https://doi.org/10.1016/0021-8693(83)90087-X
  • [Dou61] A. Douady, Variétés et espaces mixtes, Séminaire Henri Cartan, 1960/61, Exp. 2, vol. 13, 1960/1961.
  • [Dun09] Alexander Duncan, Finite groups of essential dimension 2, Comment. Math. Helv. 88 (2013), no. 3, 555-585. MR 3093503, https://doi.org/10.4171/CMH/296
  • [Dun10] Alexander Duncan, Essential dimensions of $ A_7$ and $ S_7$, Math. Res. Lett. 17 (2010), no. 2, 263-266. MR 2644373 (2011i:14077)
  • [EKM08] Richard Elman, Nikita Karpenko, and Alexander Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008. MR 2427530 (2009d:11062)
  • [FF08] Giordano Favi and Mathieu Florence, Tori and essential dimension, J. Algebra 319 (2008), no. 9, 3885-3900. MR 2407853 (2009b:20085), https://doi.org/10.1016/j.jalgebra.2007.03.048
  • [Flo08] Mathieu Florence, On the essential dimension of cyclic $ p$-groups, Invent. Math. 171 (2008), no. 1, 175-189. MR 2358058 (2008i:12006), https://doi.org/10.1007/s00222-007-0079-5
  • [Ful98] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620 (85k:14004)
  • [Gro60] A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. (1960), no. 4, 228. MR 0163908 (29:1207)
  • [Gro65] -, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965), no. 24, 231. MR 0199181 (33:7330)
  • [Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York, 1977. MR 0463157 (57 #3116)
  • [Jar03] Moshe Jarden, On ample fields, Arch. Math. (Basel) 80 (2003), no. 5, 475-477. MR 1995626 (2004g:12005), https://doi.org/10.1007/s00013-003-4610-7
  • [JLY02] Christian U. Jensen, Arne Ledet, and Noriko Yui, Generic polynomials, Constructive aspects of the inverse Galois problem, Mathematical Sciences Research Institute Publications, vol. 45, Cambridge University Press, Cambridge, 2002. MR 1969648 (2004d:12007)
  • [KM08] Nikita A. Karpenko and Alexander S. Merkurjev, Essential dimension of finite $ p$-groups, Invent. Math. 172 (2008), no. 3, 491-508. MR 2393078 (2009b:12009), https://doi.org/10.1007/s00222-007-0106-6
  • [KMRT98] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779 (2000a:16031)
  • [Kol02] János Kollár, Unirationality of cubic hypersurfaces, J. Inst. Math. Jussieu 1 (2002), no. 3, 467-476. MR 1956057 (2003m:14082), https://doi.org/10.1017/S1474748002000117
  • [Log03] Adam Logan, The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. Math. 125 (2003), no. 1, 105-138. MR 1953519 (2003j:14035)
  • [Mas11] Alex Massarenti, The automorphism group of $ \overline M_g,_n$, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 131-150. MR 3174737, https://doi.org/10.1112/jlms/jdt057
  • [Mer09] Alexander S. Merkurjev, Essential dimension, Quadratic forms--algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 299-325. MR 2537108 (2010i:14014), https://doi.org/10.1090/conm/493/09676
  • [MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906 (95m:14012)
  • [MO67] Hideyuki Matsumura and Frans Oort, Representability of group functors, and automorphisms of algebraic schemes, Invent. Math. 4 (1967), 1-25. MR 0217090 (36 #181)
  • [MR09] Aurel Meyer and Zinovy Reichstein, The essential dimension of the normalizer of a maximal torus in the projective linear group, Algebra Number Theory 3 (2009), no. 4, 467-487. MR 2525560 (2010h:11065), https://doi.org/10.2140/ant.2009.3.467
  • [Pro67] Claudio Procesi, Non-commutative affine rings, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 8 (1967), 237-255 (English, with Italian summary). MR 0224657 (37 #256)
  • [Pro12] Yuri Prokhorov, Simple finite subgroups of the Cremona group of rank 3, J. Algebraic Geom. 21 (2012), no. 3, 563-600. MR 2914804, https://doi.org/10.1090/S1056-3911-2011-00586-9
  • [Rei10] Zinovy Reichstein, Essential dimension, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 162-188. MR 2827790 (2012g:11074)
  • [RY00] Zinovy Reichstein and Boris Youssin, Essential dimensions of algebraic groups and a resolution theorem for $ G$-varieties, Canad. J. Math. 52 (2000), no. 5, 1018-1056. With an appendix by János Kollár and Endre Szabó. MR 1782331 (2001k:14088), https://doi.org/10.4153/CJM-2000-043-5
  • [Sal82] David J. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), no. 3, 250-283. MR 648801 (84a:13007), https://doi.org/10.1016/0001-8708(82)90036-6
  • [Sal99] David J. Saltman, Lectures on division algebras, CBMS Regional Conference Series in Mathematics, vol. 94, Published by American Mathematical Society, Providence, RI, 1999. MR 1692654 (2000f:16023)
  • [SB92] N. I. Shepherd-Barron, The rationality of quintic Del Pezzo surfaces--a short proof, Bull. London Math. Soc. 24 (1992), no. 3, 249-250. MR 1157259 (93b:14062), https://doi.org/10.1112/blms/24.3.249
  • [SD72] H. P. F. Swinnerton-Dyer, Rational points on del Pezzo surfaces of degree $ 5$, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff, Groningen, 1972, pp. 287-290. MR 0376684 (51 #12859)
  • [Ser79] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237 (82e:12016)
  • [Ser02] Jean-Pierre Serre, Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author. MR 1867431 (2002i:12004)
  • [Ser03] Jean-Pierre Serre, Cohomological invariants, Witt invariants, and trace forms, Cohomological invariants in Galois cohomology, Univ. Lecture Ser., vol. 28, Amer. Math. Soc., Providence, RI, 2003, pp. 1-100. Notes by Skip Garibaldi. MR 1999384
  • [Ser09] Jean-Pierre Serre, A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field, Mosc. Math. J. 9 (2009), no. 1, 193-208, back matter (English, with English and Russian summaries). MR 2567402 (2011e:14025)
  • [Sko93] Alexei N. Skorobogatov, On a theorem of Enriques-Swinnerton-Dyer, Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), no. 3, 429-440 (English, with English and French summaries). MR 1260765 (95b:14018)
  • [Spr66] T. A. Springer, Nonabelian $ H^{2}$ in Galois cohomology, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, pp. 164-182. MR 0209297 (35 #195)
  • [Tok06] Hiro-o Tokunaga, Two-dimensional versal $ G$-covers and Cremona embeddings of finite groups, Kyushu J. Math. 60 (2006), no. 2, 439-456. MR 2268246 (2007i:14017), https://doi.org/10.2206/kyushujm.60.439
  • [Tot99] Burt Totaro, The Chow ring of a classifying space, Algebraic $ K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249-281. MR 1743244 (2001f:14011)


Additional Information

Alexander Duncan
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email: arduncan@umich.edu

Zinovy Reichstein
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
Email: reichst@math.ubc.ca

DOI: https://doi.org/10.1090/S1056-3911-2015-00644-0
Received by editor(s): July 15, 2012
Received by editor(s) in revised form: April 29, 2013
Published electronically: March 20, 2015
Additional Notes: The first author was partially supported by National Science Foundation RTG grants DMS 0838697 and DMS 0943832. The second author was partially supported by National Sciences and Engineering Research Council of Canada Discovery grant 250217-2012.
Article copyright: © Copyright 2015 University Press, Inc.

American Mathematical Society