Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

On deformations of $ \mathbb{Q}$-Fano $ 3$-folds


Author: Taro Sano
Journal: J. Algebraic Geom. 25 (2016), 141-176
DOI: https://doi.org/10.1090/jag/672
Published electronically: August 4, 2015
MathSciNet review: 3419958
Full-text PDF

Abstract | References | Additional Information

Abstract: We study the deformation theory of a $ \mathbb{Q}$-Fano 3-fold with only terminal singularities. First, we show that the Kuranishi space of a $ \mathbb{Q}$-Fano 3-fold is smooth. Second, we show that every $ \mathbb{Q}$-Fano 3-fold with only ``ordinary'' terminal singularities is $ \mathbb{Q}$-smoothable; that is, it can be deformed to a $ \mathbb{Q}$-Fano 3-fold with only quotient singularities. Finally, we prove $ \mathbb{Q}$-smoothability of a $ \mathbb{Q}$-Fano 3-fold assuming the existence of a Du Val anticanonical element. As an application, we get the genus bound for primary $ \mathbb{Q}$-Fano 3-folds with Du Val anticanonical elements.


References [Enhancements On Off] (What's this?)

  • [1] Dan Abramovich and Jianhua Wang, Equivariant resolution of singularities in characteristic 0, Math. Res. Lett. 4 (1997), no. 2-3, 427-433. MR 1453072 (98c:14011), https://doi.org/10.4310/MRL.1997.v4.n3.a11
  • [2] Selma Altınok, Gavin Brown, and Miles Reid, Fano 3-folds, $ K3$ surfaces and graded rings, Topology and geometry: commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Providence, RI, 2002, pp. 25-53. MR 1941620 (2004c:14077), https://doi.org/10.1090/conm/314/05420
  • [3] D. M. Burns Jr. and Jonathan M. Wahl, Local contributions to global deformations of surfaces, Invent. Math. 26 (1974), 67-88. MR 0349675 (50 #2168)
  • [4] Barbara Fantechi and Marco Manetti, Obstruction calculus for functors of Artin rings. I, J. Algebra 202 (1998), no. 2, 541-576. MR 1617687 (99f:14004), https://doi.org/10.1006/jabr.1997.7239
  • [5] William Fulton, On the topology of algebraic varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 15-46. MR 927947 (89c:14027)
  • [6] Daniel Greb and Sönke Rollenske, Torsion and cotorsion in the sheaf of Kähler differentials on some mild singularities, Math. Res. Lett. 18 (2011), no. 6, 1259-1269. MR 2915479, https://doi.org/10.4310/MRL.2011.v18.n6.a14
  • [7] Robin Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer-Verlag, Berlin-New York, 1967. MR 0224620 (37 #219)
  • [8] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157 (57 #3116)
  • [9] Robin Hartshorne, Deformation theory, Graduate Texts in Mathematics, vol. 257, Springer, New York, 2010. MR 2583634 (2011c:14023)
  • [10] János Kollár, Flatness criteria, J. Algebra 175 (1995), no. 2, 715-727. MR 1339664 (96j:14010), https://doi.org/10.1006/jabr.1995.1209
  • [11] János Kollár and Shigefumi Mori, Classification of three-dimensional flips, J. Amer. Math. Soc. 5 (1992), no. 3, 533-703. MR 1149195 (93i:14015), https://doi.org/10.2307/2152704
  • [12] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. MR 1658959 (2000b:14018)
  • [13] Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975 (88e:14025)
  • [14] Tatsuhiro Minagawa, Deformations of $ {\bf Q}$-Calabi-Yau $ 3$-folds and $ {\bf Q}$-Fano $ 3$-folds of Fano index $ 1$, J. Math. Sci. Univ. Tokyo 6 (1999), no. 2, 397-414. MR 1707207 (2000g:14051)
  • [15] Tatsuhiro Minagawa, Deformations of weak Fano 3-folds with only terminal singularities, Osaka J. Math. 38 (2001), no. 3, 533-540. MR 1860839 (2002j:14048)
  • [16] Shigefumi Mori, On $ 3$-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43-66. MR 792770 (86m:14003)
  • [17] Shigeru Mukai, New developments in the theory of Fano threefolds: vector bundle method and moduli problems [translation of Sūgaku 47 (1995), no.2, 125-144; MR1364825 (96m:14059)], Sugaku Expositions 15 (2002), no. 2, 125-150. MR 1944132
  • [18] Yoshinori Namikawa, On deformations of Calabi-Yau $ 3$-folds with terminal singularities, Topology 33 (1994), no. 3, 429-446. MR 1286924 (95h:14035), https://doi.org/10.1016/0040-9383(94)90021-3
  • [19] Yoshinori Namikawa, Smoothing Fano $ 3$-folds, J. Algebraic Geom. 6 (1997), no. 2, 307-324. MR 1489117 (99d:14040)
  • [20] Yoshinori Namikawa, Calabi-Yau threefolds and deformation theory [translation of Sūgaku 48 (1996), no. 4, 337-357; MR1614448 (2000h:14032)], Sugaku Expositions 15 (2002), no. 1, 1-29. MR 1898900
  • [21] Yoshinori Namikawa and J. H. M. Steenbrink, Global smoothing of Calabi-Yau threefolds, Invent. Math. 122 (1995), no. 2, 403-419. MR 1358982 (96m:14056), https://doi.org/10.1007/BF01231450
  • [22] Chris A. M. Peters and Joseph H. M. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer-Verlag, Berlin, 2008. MR 2393625 (2009c:14018)
  • [23] G. V. Ravindra and V. Srinivas, The Grothendieck-Lefschetz theorem for normal projective varieties, J. Algebraic Geom. 15 (2006), no. 3, 563-590. MR 2219849 (2006m:14008), https://doi.org/10.1090/S1056-3911-05-00421-2
  • [24] G. V. Ravindra and V. Srinivas, The Noether-Lefschetz theorem for the divisor class group, J. Algebra 322 (2009), no. 9, 3373-3391. MR 2567426 (2011a:13019), https://doi.org/10.1016/j.jalgebra.2008.09.003
  • [25] M. Reid, Projective morphisms according to Kawamata, Warwick preprint, 1983, www.maths.warwick.ac.uk/~miles/3folds/Ka.pdf
  • [26] Miles Reid, Minimal models of canonical $ 3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131-180. MR 715649 (86a:14010)
  • [27] Miles Reid, Young person's guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345-414. MR 927963 (89b:14016)
  • [28] Michael Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17-26. MR 0292830 (45 #1912)
  • [29] Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006. MR 2247603 (2008e:14011)
  • [30] E. Sernesi, Errata and Addenda to ``Deformations of algebraic schemes'', www.mat.
    uniroma3.it/users/sernesi/errataDAS.pdf
  • [31] V. V. Šokurov, Smoothness of a general anticanonical divisor on a Fano variety, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 430-441 (Russian). MR 534602 (80h:14020)
  • [32] Hiromichi Takagi, Classification of primary $ \mathbb{Q}$-Fano threefolds with anti-canonical Du Val $ K3$ surfaces. I, J. Algebraic Geom. 15 (2006), no. 1, 31-85. MR 2177195 (2006k:14071), https://doi.org/10.1090/S1056-3911-05-00416-9
  • [33] Hiromichi Takagi, On classification of $ \mathbb{Q}$-Fano 3-folds of Gorenstein index 2. I, II, Nagoya Math. J. 167 (2002), 117-155, 157-216. MR 1924722 (2003j:14056)
  • [34] Jonathan M. Wahl, Equisingular deformations of normal surface singularities. I, Ann. of Math. (2) 104 (1976), no. 2, 325-356. MR 0422270 (54 #10261)


Additional Information

Taro Sano
Affiliation: Mathematics Institute, Zeeman Building, University of Warwick, Coventry, CV4 7AL, United Kingdom – and – Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
Email: tarosano222@gmail.com

DOI: https://doi.org/10.1090/jag/672
Received by editor(s): November 25, 2012
Received by editor(s) in revised form: July 15, 2013, March 14, 2014, March 21, 2014, August 5, 2014, and September 2, 2014
Published electronically: August 4, 2015
Additional Notes: The author was partially supported by a Warwick Postgraduate Research Scholarship. He was partially funded by the Korean government WCU Grant R33-2008-000-10101-0, Research Institute for Mathematical Sciences and Higher School of Economics
Dedicated: Dedicated to Professor Yujiro Kawamata on the occasion of his 60th birthday
Article copyright: © Copyright 2015 University Press, Inc.

American Mathematical Society