Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Arithmetic positivity on toric varieties


Authors: José Ignacio Burgos Gil, Atsushi Moriwaki, Patrice Philippon and Martín Sombra
Journal: J. Algebraic Geom. 25 (2016), 201-272
DOI: https://doi.org/10.1090/jag/643
Published electronically: December 4, 2015
MathSciNet review: 3466351
Full-text PDF

Abstract | References | Additional Information

Abstract: We continue the study of the arithmetic geometry of toric varieties started by J. Burgos Gil, P. Philippon, and M. Sombra in 2011. In this text, we study the positivity properties of metrized $ \mathbb{R}$-divisors in the toric setting. For a toric metrized $ \mathbb{R}$-divisor, we give formulae for its arithmetic volume and its $ \chi $-arithmetic volume, and we characterize when it is arithmetically ample, nef, big or pseudo-effective, in terms of combinatorial data. As an application, we prove a higher-dimensional analogue of Dirichlet's unit theorem for toric varieties, we give a characterization for the existence of a Zariski decomposition of a toric metrized $ \mathbb{R}$-divisor, and we prove a toric arithmetic Fujita approximation theorem.


References [Enhancements On Off] (What's this?)

  • [BC11] Sébastien Boucksom and Huayi Chen, Okounkov bodies of filtered linear series, Compos. Math. 147 (2011), no. 4, 1205-1229. MR 2822867, https://doi.org/10.1112/S0010437X11005355
  • [BFJ15] Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Solution to a non-Archimedean Monge-Ampère equation, J. Amer. Math. Soc. 28 (2015), no. 3, 617-667. MR 3327532, https://doi.org/10.1090/S0894-0347-2014-00806-7
  • [Bil97] Yuri Bilu, Limit distribution of small points on algebraic tori, Duke Math. J. 89 (1997), no. 3, 465-476. MR 1470340 (98m:11067), https://doi.org/10.1215/S0012-7094-97-08921-3
  • [BPS14] José Ignacio Burgos Gil, Patrice Philippon, and Martín Sombra, Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque 360 (2014), vi+222 (English, with English and French summaries). MR 3222615
  • [BR06] Matthew H. Baker and Robert Rumely, Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 3, 625-688 (English, with English and French summaries). MR 2244226 (2007m:11082)
  • [Bur97] Jose Ignacio Burgos, Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebraic Geom. 6 (1997), no. 2, 335-377. MR 1489119 (99d:14015)
  • [Cha06] Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215-235 (French). MR 2244803 (2008b:14040), https://doi.org/10.1515/CRELLE.2006.049
  • [Che10] Huayi Chen, Arithmetic Fujita approximation, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 4, 555-578 (English, with English and French summaries). MR 2722508 (2012a:14060)
  • [CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322 (2012g:14094)
  • [EGA] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique. I, Grunlehren der Math. Wissenschaften 166 (1971); II, Publ. Math. I.H.É.S. 8 (1961); III, ibid. 11 (1961); IV, ibid. 20 (1964), 24 (1965), 28 (1966), 32 (1967).
  • [FR06] Charles Favre and Juan Rivera-Letelier, Équidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann. 335 (2006), no. 2, 311-361 (French, with English and French summaries). MR 2221116 (2007g:11074), https://doi.org/10.1007/s00208-006-0751-x
  • [Ful93] William Fulton, Introduction to toric varieties, The William H. Roever Lectures in Geometry, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. MR 1234037 (94g:14028)
  • [Gau09] Éric Gaudron, Géométrie des nombres adélique et lemmes de Siegel généralisés, Manuscripta Math. 130 (2009), no. 2, 159-182 (French, with English and French summaries). MR 2545512 (2010i:11102), https://doi.org/10.1007/s00229-009-0282-3
  • [GS88] Henri Gillet and Christophe Soulé, Amplitude arithmétique, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 17, 887-890 (French, with English summary). MR 974432 (90a:14028)
  • [GS90] Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93-174 (1991). MR 1087394 (92d:14016)
  • [Lan83] Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605 (85j:11005)
  • [Lan94] Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723 (95f:11085)
  • [Laz04] Robert Lazarsfeld, Positivity in algebraic geometry. I, Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. MR 2095471 (2005k:14001a)
  • [Liu02] Qing Liu, Algebraic geometry and arithmetic curves, translated from the French by Reinie Erné, Oxford Science Publications, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. MR 1917232 (2003g:14001)
  • [Mor09] Atsushi Moriwaki, Continuity of volumes on arithmetic varieties, J. Algebraic Geom. 18 (2009), no. 3, 407-457. MR 2496453 (2011a:14053), https://doi.org/10.1090/S1056-3911-08-00500-6
  • [Mor11] Atsushi Moriwaki, Big arithmetic divisors on the projective spaces over $ \mathbb{Z}$, Kyoto J. Math. 51 (2011), no. 3, 503-534. MR 2823999 (2012f:14049), https://doi.org/10.1215/21562261-1299882
  • [Mor12a] Atsushi Moriwaki, Arithmetic linear series with base conditions, Math. Z. 272 (2012), no. 3-4, 1383-1401. MR 2995173, https://doi.org/10.1007/s00209-012-0991-2
  • [Mor12b] Atsushi Moriwaki, Zariski decompositions on arithmetic surfaces, Publ. Res. Inst. Math. Sci. 48 (2012), no. 4, 799-898. MR 2999543, https://doi.org/10.2977/PRIMS/89
  • [Mor13] Atsushi Moriwaki, Toward Dirichlet's unit theorem on arithmetic varieties, Kyoto J. Math. 53 (2013), no. 1, 197-259. MR 3049312, https://doi.org/10.1215/21562261-1966116
  • [Mor14] Atsushi Moriwaki, Numerical characterization of nef arithmetic divisors on arithmetic surfaces, Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), no. 3, 717-753 (English, with English and French summaries). MR 3266711, https://doi.org/10.5802/afst.1422
  • [Roc70] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683 (43 #445)
  • [SUZ97] L. Szpiro, E. Ullmo, and S. Zhang, Équirépartition des petits points, Invent. Math. 127 (1997), no. 2, 337-347 (French). MR 1427622 (98i:14027), https://doi.org/10.1007/s002220050123
  • [Wei74] André Weil, Basic number theory, 3rd ed., Springer-Verlag, New York-Berlin, 1974. Die Grundlehren der Mathematischen Wissenschaften, Band 144. MR 0427267 (55 #302)
  • [Yua08] Xinyi Yuan, Big line bundles over arithmetic varieties, Invent. Math. 173 (2008), no. 3, 603-649. MR 2425137 (2010b:14049), https://doi.org/10.1007/s00222-008-0127-9
  • [Yua09a] Xinyi Yuan, On volumes of arithmetic line bundles, Compos. Math. 145 (2009), no. 6, 1447-1464. MR 2575090 (2011a:14054), https://doi.org/10.1112/S0010437X0900428X
  • [Yua09b] Xinyi Yuan, On volumes of arithmetic line bundles. II, e-print arXiv:0909.3680v1, 2009.
  • [Zha95a] Shouwu Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), no. 1, 187-221. MR 1254133 (95c:14020), https://doi.org/10.2307/2152886
  • [Zha95b] Shouwu Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281-300. MR 1311351 (96e:14025)


Additional Information

José Ignacio Burgos Gil
Affiliation: Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UCM3), Calle Nicolás Cabrera 15, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Email: burgos@icmat.es

Atsushi Moriwaki
Affiliation: Department of Mathematics, Faculty of Science, Kyoto University, 606-8502 Kyoto, Japan
Email: moriwaki@math.kyoto-u.ac.jp

Patrice Philippon
Affiliation: Institut de Mathématiques de Jussieu – U.M.R. 7586 du CNRS, Équipe de Théorie des Nombres, Case 247, 4 place Jussieu, 75252 Paris cedex 05, France
Email: patrice.philippon@imj-prg.fr

Martín Sombra
Affiliation: ICREA and Universitat de Barcelona, Departament d’Àlgebra i Geometria, Gran Via 585, 08007 Barcelona, Spain
Email: sombra@ub.edu

DOI: https://doi.org/10.1090/jag/643
Received by editor(s): October 26, 2012
Received by editor(s) in revised form: February 13, 2013
Published electronically: December 4, 2015
Additional Notes: The first author was partially supported by the MICINN research projects MTM2009-14163-C02-01 and MTM2010-17389. The second author was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (A) 22244003, 2011. The third author was partially supported by the CNRS international projects for scientific cooperation (PICS) “Properties of the heights of arithmetic varieties”, “Géométrie diophantienne et calcul formel”, and the ANR research project “Hauteur, modularité, transcendance”. The fourth author was partially supported by the MICINN research project MTM2009-14163-C02-01 and the MINECO research project MTM2012-38122-C03-02.
Article copyright: © Copyright 2015 University Press, Inc.

American Mathematical Society