Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Local-global questions for tori over $ p$-adic function fields


Authors: David Harari and Tamás Szamuely
Journal: J. Algebraic Geom. 25 (2016), 571-605
DOI: https://doi.org/10.1090/jag/661
Published electronically: March 31, 2016
MathSciNet review: 3493592
Full-text PDF

Abstract | References | Additional Information

Abstract: We study local-global questions for Galois cohomology over the function field of a curve defined over a $ p$-adic field (a field of cohomological dimension 3). We define Tate-Shafarevich groups of a commutative group scheme via cohomology classes locally trivial at each completion of the base field coming from a closed point of the curve. In the case of a torus we establish a perfect duality between the first Tate-Shafarevich group of the torus and the second Tate-Shafarevich group of the dual torus. Building upon the duality theorem, we show that the failure of the local-global principle for rational points on principal homogeneous spaces under tori is controlled by a certain subquotient of a third étale cohomology group. We also prove a generalization to principal homogeneous spaces of certain reductive group schemes in the case when the base curve has good reduction.


References [Enhancements On Off] (What's this?)

  • [1] Spencer Bloch, Algebraic cycles and higher $ K$-theory, Adv. in Math. 61 (1986), no. 3, 267-304. MR 852815 (88f:18010), https://doi.org/10.1016/0001-8708(86)90081-2
  • [2] Mikhail Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc. 132 (1998), no. 626, viii+50. MR 1401491 (98j:20061), https://doi.org/10.1090/memo/0626
  • [3] Mikhail Borovoi and Joost van Hamel, Extended Picard complexes and linear algebraic groups, J. Reine Angew. Math. 627 (2009), 53-82. MR 2494913 (2010b:14041), https://doi.org/10.1515/CRELLE.2009.011
  • [4] V. I. Chernousov, A remark on the $ ({\rm mod}\, 5)$-invariant of Serre for groups of type $ E_8$, Mat. Zametki 56 (1994), no. 1, 116-121, 157 (Russian, with Russian summary); English transl., Math. Notes 56 (1994), no. 1-2, 730-733 (1995). MR 1309826 (95i:20072), https://doi.org/10.1007/BF02110564
  • [5] Vladimir Chernousov, On the kernel of the Rost invariant for $ E_8$ modulo $ 3$, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., vol. 18, Springer, New York, 2010, pp. 199-214. MR 2648726, https://doi.org/10.1007/978-1-4419-6211-9_11
  • [6] Jean-Louis Colliot-Thélène, Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math. 618 (2008), 77-133 (French). MR 2404747 (2009a:11091), https://doi.org/10.1515/CRELLE.2008.034
  • [7] J.-L. Colliot-Thélène, P. Gille, and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), no. 2, 285-341. MR 2034644 (2005f:11063), https://doi.org/10.1215/S0012-7094-04-12124-4
  • [8] Jean-Louis Colliot-Thélène, Raman Parimala, and Venapally Suresh, Patching and local-global principles for homogeneous spaces over function fields of $ p$-adic curves, Comment. Math. Helv. 87 (2012), no. 4, 1011-1033. MR 2984579, https://doi.org/10.4171/CMH/276
  • [9] J.-L. Colliot-Thélène, R. Parimala, and V. Suresh, Lois de réciprocité supérieures et points rationnels, Trans. Amer. Math. Soc. 368 (2016), no. 6, 4219-4255. MR 3453370, https://doi.org/10.1090/tran/6519
  • [10] Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $ R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175-229 (French). MR 0450280 (56 #8576)
  • [11] Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375-492 (French). MR 899402 (89f:11082), https://doi.org/10.1215/S0012-7094-87-05420-2
  • [12] Thomas Geisser, Duality via cycle complexes, Ann. of Math. (2) 172 (2010), no. 2, 1095-1126. MR 2680487 (2012a:19009), https://doi.org/10.4007/annals.2010.172.1095
  • [13] Thomas Geisser and Marc Levine, The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. Reine Angew. Math. 530 (2001), 55-103. MR 1807268 (2003a:14031), https://doi.org/10.1515/crll.2001.006
  • [14] Marvin J. Greenberg, Rational points in Henselian discrete valuation rings, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 59-64. MR 0207700 (34 #7515)
  • [15] David Harari, Claus Scheiderer, and Tamás Szamuely, Weak approximation for tori over $ p$-adic function fields, Int. Math. Res. Not. IMRN 10 (2015), 2751-2783. MR 3352255, https://doi.org/10.1093/imrn/rnu019
  • [16] David Harari and Tamás Szamuely, Arithmetic duality theorems for 1-motives, J. Reine Angew. Math. 578 (2005), 93-128. MR 2113891 (2006f:14053), https://doi.org/10.1515/crll.2005.2005.578.93
  • [17] David Harari and Tamás Szamuely, Local-global principles for 1-motives, Duke Math. J. 143 (2008), no. 3, 531-557. MR 2423762 (2009i:14026), https://doi.org/10.1215/00127094-2008-028
  • [18] David Harbater, Julia Hartmann, and Daniel Krashen, Local-global principles for torsors over arithmetic curves, Amer. J. Math. 137 (2015), no. 6, 1559-1612. MR 3432268, https://doi.org/10.1353/ajm.2015.0039
  • [19] Günter Harder, Halbeinfache Gruppenschemata über vollständigen Kurven, Invent. Math. 6 (1968), 107-149 (German). MR 0263826 (41 #8425)
  • [20] Yong Hu, Hasse principle for simply connected groups over function fields of surfaces, J. Ramanujan Math. Soc. 29 (2014), no. 2, 155-199. MR 3237731
  • [21] Bruno Kahn, Classes de cycles motiviques étales, Algebra Number Theory 6 (2012), no. 7, 1369-1407 (French, with English and French summaries). MR 3007153, https://doi.org/10.2140/ant.2012.6.1369
  • [22] Kazuya Kato, A generalization of local class field theory by using $ K$-groups. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603-683. MR 603953 (83g:12020a)
  • [23] Kazuya Kato, A Hasse principle for two-dimensional global fields, with an appendix by Jean-Louis Colliot-Thélène, J. Reine Angew. Math. 366 (1986), 142-183. MR 833016 (88b:11036), https://doi.org/10.1515/crll.1986.366.142
  • [24] Martin Kneser, Starke Approximation in algebraischen Gruppen. I, J. Reine Angew. Math. 218 (1965), 190-203 (German). MR 0184945 (32 #2416)
  • [25] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, with a preface in French by J. Tits, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. MR 1632779 (2000a:16031)
  • [26] Stephen Lichtenbaum, Duality theorems for curves over $ p$-adic fields, Invent. Math. 7 (1969), 120-136. MR 0242831 (39 #4158)
  • [27] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531 (81j:14002)
  • [28] J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804 (88e:14028)
  • [29] J. S. Milne and K.-y. Shih, Conjugates of Shimura varieties, in P. Deligne at al. Hodge Cycles, Motives and Shimura Varieties, Lecture Notes in Math. vol. 900, Springer-Verlag, 1982, pp. 280-356. MR 654325 (84m:14046)
  • [30] R. Preeti, Classification theorems for Hermitian forms, the Rost kernel and Hasse principle over fields with $ cd_2(k)\leq 3$, J. Algebra 385 (2013), 294-313. MR 3049572, https://doi.org/10.1016/j.jalgebra.2013.02.038
  • [31] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80 (French). MR 631309 (83d:12010), https://doi.org/10.1515/crll.1981.327.12
  • [32] Claus Scheiderer and Joost van Hamel, Cohomology of tori over $ p$-adic curves, Math. Ann. 326 (2003), no. 1, 155-183. MR 1981617 (2004m:14041), https://doi.org/10.1007/s00208-003-0416-y
  • [33] Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577 (96b:12010)
  • [34] Nikita Semenov, Motivic construction of cohomological invariants, Comment. Math. Helv. 91 (2016), no. 1, 163-202. MR 3471941, https://doi.org/10.4171/CMH/382
  • [35] Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760 (2002d:14032)
  • [36] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR 1642713 (99h:20075)
  • [37] Andrei Suslin and Vladimir Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 117-189. MR 1744945 (2001g:14031)
  • [38] Burt Totaro, Milnor $ K$-theory is the simplest part of algebraic $ K$-theory, $ K$-Theory 6 (1992), no. 2, 177-189. MR 1187705 (94d:19009), https://doi.org/10.1007/BF01771011
  • [39] V. E. Voskresenskiĭ, Birational properties of linear algebraic groups, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 3-19 (Russian). MR 0262251 (41 #6861)


Additional Information

David Harari
Affiliation: Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
Email: David.Harari@math.u-psud.fr

Tamás Szamuely
Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda utca 13–15, H-1053 Budapest, Hungary – and – Central European University, Nádor utca 9, H-1051 Budapest, Hungary
Email: szamuely.tamas@renyi.mta.hu

DOI: https://doi.org/10.1090/jag/661
Received by editor(s): October 4, 2013
Received by editor(s) in revised form: February 26, 2014
Published electronically: March 31, 2016
Article copyright: © Copyright 2016 University Press, Inc.

American Mathematical Society