Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Canonical bundle formula and base change


Author: Kentaro Mitsui
Journal: J. Algebraic Geom. 25 (2016), 775-814
DOI: https://doi.org/10.1090/jag/663
Published electronically: June 13, 2016
MathSciNet review: 3533185
Full-text PDF

Abstract | References | Additional Information

Abstract: We study invariants of an elliptic fibration over a complete discrete valuation ring with algebraically closed residue field. The invariants are given by the relative dualizing sheaf and the first direct image sheaf of the structure sheaf. In the studies of an elliptic surface over an algebraically closed field, the invariants appear as local invariants that determine important global invariants such as its plurigenera. We determine the invariants by investigating the change of the invariants by base change.


References [Enhancements On Off] (What's this?)

  • [1] Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. MR 0153708 (27 #3669)
  • [2] Enrico Bombieri and David Mumford, Enriques' classification of surfaces in char. $ p$. II, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 23-42. MR 0491719 (58 #10922a)
  • [3] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956 (95h:13020)
  • [4] Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902 (2002d:14025)
  • [5] Brian Conrad, Minimal models for elliptic curves, notes, http://math.stanford.edu/~conrad/papers/minimalmodel.pdf, 2015.
  • [6] François R. Cossec and Igor V. Dolgachev, Enriques surfaces. I, Progress in Mathematics, vol. 76, Birkhäuser Boston, Inc., Boston, MA, 1989. MR 986969 (90h:14052)
  • [7] Schémas en groupes (French), Séminaire de Géométrie Algébrique du Bois Marie 1962-1964 (SGA 3), Dirigé par Michel Demazure and Alexandre Grothendieck, Lecture Notes in Mathematics, vols. 151, 152, 153, Springer-Verlag, Berlin, 1970. MR 43:223a, MR 43:223b, MR 43:223c
  • [8] Jean Dieudonné and Alexandre Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas (French), Inst. Hautes Études Sci. Publ. Math. 20, 24, 28, 32 (1964, 1965, 1966, 1967), 5-259, 5-231, 5-255, 5-361. MR 30:3885, MR 33:7330, MR 36:178, MR 39:220
  • [9] Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, Berlin, 1973. MR 0382254 (52 #3139)
  • [10] Ofer Gabber, Qing Liu, and Dino Lorenzini, The index of an algebraic variety, Invent. Math. 192 (2013), no. 3, 567-626. MR 3049930, https://doi.org/10.1007/s00222-012-0418-z
  • [11] Revêtements étales et groupe fondamental (French), Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1), Dirigé par Alexandre Grothendieck, augmenté de deux exposés de Michèle Raynaud, Lecture Notes in Mathematics, vol. 224, Springer-Verlag, Berlin, 1971. MR 0354651 (50 #7129)
  • [12] Mitsuyasu Hashimoto, Equivariant twisted inverses, Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Mathematics, vol. 1960, Springer, Berlin, 2009, pp. 261-478. MR 2490558 (2011f:18019), https://doi.org/10.1007/978-3-540-85420-3
  • [13] Toshiyuki Katsura and Kenji Ueno, On elliptic surfaces in characteristic $ p$, Math. Ann. 272 (1985), no. 3, 291-330. MR 799664 (87g:14040), https://doi.org/10.1007/BF01455561
  • [14] Toshiyuki Katsura and Kenji Ueno, Multiple singular fibres of type $ {\bf G}_a$ of elliptic surfaces in characteristic $ p$, Algebraic and topological theories (Kinosaki, 1984) Kinokuniya, Tokyo, 1986, pp. 405-429. MR 1102270
  • [15] Kunihiko Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751-798. MR 0187255 (32 #4708)
  • [16] Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 195-279. MR 0276239 (43 #1986)
  • [17] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford Science Publications, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné. MR 1917232 (2003g:14001)
  • [18] Qing Liu, Dino Lorenzini, and Michel Raynaud, Néron models, Lie algebras, and reduction of curves of genus one, Invent. Math. 157 (2004), no. 3, 455-518. MR 2092767 (2005m:14039), https://doi.org/10.1007/s00222-004-0342-y
  • [19] Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by Miles Reid. MR 1011461 (90i:13001)
  • [20] Kentaro Mitsui, Logarithmic transformations of rigid analytic elliptic surfaces, Math. Ann. 355 (2013), no. 3, 1123-1170. MR 3020156, https://doi.org/10.1007/s00208-012-0813-1
  • [21] Kentaro Mitsui, On a question of Zariski on Zariski surfaces, Math. Z. 276 (2014), no. 1-2, 237-242. MR 3150201, https://doi.org/10.1007/s00209-013-1195-0
  • [22] Andrew P. Ogg, Elliptic curves and wild ramification, Amer. J. Math. 89 (1967), 1-21. MR 0207694 (34 #7509)
  • [23] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979. Translated from the French by Marvin J. Greenberg. MR 554237 (82e:12016)
  • [24] Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094 (2010i:11005)
  • [25] Michael Szydlo, Elliptic fibers over non-perfect residue fields, J. Number Theory 104 (2004), no. 1, 75-99. MR 2021627 (2004k:11091), https://doi.org/10.1016/j.jnt.2003.06.004
  • [26] Oleg N. Vvedenskiĭ, Duality in elliptic curves over a local field. I, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1091-1112 (Russian). MR 0170894 (30 #1129)
  • [27] Oleg N. Vvedenskiĭ, Duality in elliptic curves over a local field. II, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 891-922 (Russian). MR 0205993 (34 #5818)


Additional Information

Kentaro Mitsui
Affiliation: Department of Mathematics, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
Email: mitsui@math.kobe-u.ac.jp

DOI: https://doi.org/10.1090/jag/663
Received by editor(s): July 30, 2013
Received by editor(s) in revised form: December 26, 2013, February 13, 2014, and April 15, 2014
Published electronically: June 13, 2016
Article copyright: © Copyright 2016 University Press, Inc.

American Mathematical Society