Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Symmetric cubic surfaces and $ \mathbf{G}_2$ character varieties


Authors: Philip Boalch and Robert Paluba
Journal: J. Algebraic Geom. 25 (2016), 607-631
DOI: https://doi.org/10.1090/jag/668
Published electronically: April 6, 2016
MathSciNet review: 3533182
Full-text PDF

Abstract | References | Additional Information

Abstract: We will consider a two dimensional ``symmetric'' subfamily of the four dimensional family of Fricke cubic surfaces. The main result is that such symmetric cubic surfaces arise as character varieties for the exceptional group of type $ G_2$. Further, this symmetric family will be related to the fixed points of the triality automorphism of $ \operatorname {Spin}(8)$, and an example involving the finite simple group of order $ 6048$ inside $ G_2$ will be considered.


References [Enhancements On Off] (What's this?)

  • [1] D. Arinkin and S. Lysenko, Isomorphisms between moduli spaces of $ {\rm SL}(2)$-bundles with connections on $ {\bf P}^1\backslash \{x_1,\cdots , x_4\}$, Math. Res. Lett. 4 (1997), no. 2-3, 181-190. MR 1453052 (98h:14012), https://doi.org/10.4310/MRL.1997.v4.n2.a1
  • [2] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523-615. MR 702806 (85k:14006), https://doi.org/10.1098/rsta.1983.0017
  • [3] M. Audin, Lectures on gauge theory and integrable systems, Gauge theory and symplectic geometry (Montreal, PQ, 1995) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 488, Kluwer Acad. Publ., Dordrecht, 1997, pp. 1-48. MR 1461568
  • [4] J. C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145-205. MR 1886087 (2003f:17003), https://doi.org/10.1090/S0273-0979-01-00934-X
  • [5] A. Beilinson and V. Drinfeld, Quantisation of Hitchin's fibration and Langlands program, Algebraic and Geometric methods in Mathematical Physics (A. Boutet de Monvel and V.A. Marchenko, eds.), Math. Phys. Studies, vol. 19, Kluwer Acad. Publ., Netherlands, 1996. MR 1385673 (96m:00015)
  • [6] P. P. Boalch, Painlevé equations and complex reflections, Proceedings of the International Conference in Honor of Frédéric Pham (Nice, 2002), 2003, pp. 1009-1022 (English, with English and French summaries). MR 2033508 (2005a:34128)
  • [7] P. P. Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. (3) 90 (2005), no. 1, 167-208. MR 2107041, https://doi.org/10.1112/S0024611504015011
  • [8] P. P. Boalch, The fifty-two icosahedral solutions to Painlevé VI, J. Reine Angew. Math. 596 (2006), 183-214. MR 2254812 (2007i:34149), https://doi.org/10.1515/CRELLE.2006.059
  • [9] P. P. Boalch, Six results on Painlevé VI, Théories asymptotiques et équations de Painlevé, Sémin. Congr., vol. 14, Soc. Math. France, Paris, 2006, pp. 1-20 (English, with English and French summaries). MR 2349685
  • [10] P. P. Boalch, Some explicit solutions to the Riemann-Hilbert problem, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., vol. 9, Eur. Math. Soc., Zürich, 2007, pp. 85-112. MR 2322328
  • [11] P. P. Boalch, Irregular connections and Kac-Moody root systems, 2008, arXiv:math/
    0806.1050.
  • [12] P. P. Boalch, Riemann-Hilbert for tame complex parahoric connections, Transform. Groups 16 (2011), no. 1, 27-50. MR 2785493 (2012m:14020), https://doi.org/10.1007/s00031-011-9121-1
  • [13] P. P. Boalch, Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves, 2012, text of talk at Institut Henri Poincaré, arXiv:1203.6607.
  • [14] P. P. Boalch, Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 1-68. MR 3090254, https://doi.org/10.1007/s10240-012-0044-8
  • [15] J. H. Conway and D. A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Ltd., Natick, MA, 2003. MR 1957212 (2004a:17002)
  • [16] W. Crawley-Boevey and P. Shaw, Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem, Adv. Math. 201 (2006), no. 1, 180-208. MR 2204754 (2006m:16015), https://doi.org/10.1016/j.aim.2005.02.003
  • [17] R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Funktionen. Band 1: Die gruppentheoretischen Grundlagen. Band II: Die funktionentheoretischen Ausführungen und die Andwendungen, Bibliotheca Mathematica Teubneriana, Bände 3, vol. 4, Johnson Reprint Corp., New York; B. G. Teubner Verlagsgesellschaft, Stuttgart, 1965 (German). MR 0183872
  • [18] W. Fulton and J. Harris, Representation theory, A first course, Readings in Mathematics, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. MR 1153249 (93a:20069)
  • [19] W. M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), no. 3, 557-607. MR 952283 (89m:57001), https://doi.org/10.1007/BF01410200
  • [20] R. L. Griess Jr., Basic conjugacy theorems for $ G_2$, Invent. Math. 121 (1995), no. 2, 257-277. MR 1346206 (96f:20065), https://doi.org/10.1007/BF01884298
  • [21] N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42 (1995), no. 1, 30-112. MR 1350695 (96g:53057)
  • [22] N. J. Hitchin, Langlands duality and $ G_2$ spectral curves, Q. J. Math. 58 (2007), no. 3, 319-344. MR 2354922 (2008j:14065), https://doi.org/10.1093/qmath/ham016
  • [23] K. Iwasaki, A modular group action on cubic surfaces and the monodromy of the Painlevé VI equation, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 131-135. MR 1930217 (2003h:34187)
  • [24] V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funkcional. Anal. i Priložen. 3 (1969), 94-96. MR 0251091
  • [25] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665-683. MR 992334 (90d:53055)
  • [26] M. Lorenz, Multiplicative invariant theory, Invariant Theory and Algebraic Transformation Groups, VI. Encyclopaedia of Mathematical Sciences, vol. 135, Springer-Verlag, Berlin, 2005. MR 2131760 (2005m:13012)
  • [27] W. Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z. 170 (1980), no. 1, 91-103. MR 558891 (81a:20043), https://doi.org/10.1007/BF01214715
  • [28] Yu. I. Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of $ \mathbf {P}^2$, Geometry of differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 186, Amer. Math. Soc., Providence, RI, 1998, pp. 131-151. MR 1732409 (2001b:14086)
  • [29] I. Naruki, Cross ratio variety as a moduli space of cubic surfaces, with an appendix by Eduard Looijenga, Proc. London Math. Soc. (3) 45 (1982), no. 1, 1-30. MR 662660 (84d:14020), https://doi.org/10.1112/plms/s3-45.1.1
  • [30] A. Oblomkov, Double affine Hecke algebras of rank 1 and affine cubic surfaces, Int. Math. Res. Not. 18 (2004), 877-912. MR 2037756 (2005j:20005), https://doi.org/10.1155/S1073792804133072
  • [31] K. Okamoto, Studies on the Painlevé equations. I. Sixth Painlevé equation $ P_{{\rm VI}}$, Ann. Mat. Pura Appl. (4) 146 (1987), 337-381. MR 916698 (88m:58062), https://doi.org/10.1007/BF01762370
  • [32] G. W. Schwarz, Representations of simple Lie groups with regular rings of invariants, Invent. Math. 49 (1978), no. 2, 167-191. MR 511189 (80m:14032), https://doi.org/10.1007/BF01403085
  • [33] G. W. Schwarz, Invariant theory of $ G_{2}$, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 3, 335-338. MR 714998 (85c:20031), https://doi.org/10.1090/S0273-0979-1983-15197-2
  • [34] J.-P. Serre, Coordinées de Kac, http://www.college-de-france.fr/site/historique/essai.htm, 2006.
  • [35] H. Vogt, Sur les invariants fondamentaux des équations différentielles linéaires du second ordre, Ann. Sci. École Norm. Sup. (3) 6 (1889), 3-71 (French). MR 1508833
  • [36] D. Yamakawa, Geometry of multiplicative preprojective algebra, Int. Math. Res. Pap. IMRP (2008), Art. ID rpn008, 77 pp. MR 2470573 (2010e:16028)


Additional Information

Philip Boalch
Affiliation: Laboratoire de Mathématiques d’Orsay (CNRS UMR 8628), Bâtiment 425, Université Paris-Sud, 91405 Orsay, France
Email: philip.boalch@math.u-psud.fr

Robert Paluba
Affiliation: Laboratoire de Mathématiques d’Orsay (CNRS UMR 8628), Bâtiment 425, Université Paris-Sud, 91405 Orsay, France
Email: robert.paluba@math.u-psud.fr

DOI: https://doi.org/10.1090/jag/668
Received by editor(s): June 2, 2013
Received by editor(s) in revised form: July 9, 2014, and September 27, 2014
Published electronically: April 6, 2016
Additional Notes: The first-named author was partially supported by ANR grants 08-BLAN-0317-01/02, 09-JCJC-0102-01, 13-BS01-0001-01, and 13-IS01-0001-01/02
Article copyright: © Copyright 2016 University Press, Inc.

American Mathematical Society